Stability of the Caffarelli-Kohn-Nirenberg inequality: the existence of minimizers (2308.04667v5)
Abstract: In this paper, we consider the following variational problem: \begin{eqnarray*} \inf_{u\in D{1,2}a(\bbrN)\backslash\mathcal{Z}}\frac{|u|2{D{1,2}a(\bbrN)}-C{a,b,N}{-1}|u|2_{L{p+1}(|x|{-b(p+1)},\bbrN)}}{dist_{D{1,2}_{a}}2(u, \mathcal{Z})}:=c_{BE}, \end{eqnarray*} where $N\geq2$, $b_{FS}(a)<b<a+1$ for $a\<0$ and $a\leq b<a+1$ for $0\leq a<a_c:=\frac{N-2}{2}$ and $a+b\>0$ with $b_{FS}(a)$ being the Felli-Schneider curve, $p=\frac{N+2(1+a-b)}{N-2(1+a-b)}$, $\mathcal{Z}= { c \tau{a_c-a}W(\tau x)\mid c\in\bbr\backslash{0}, \tau>0}$ and up to dilations and scalar multiplications, $W(x)$, which is positive and radially symmetric, is the unique extremal function of the following classical Caffarelli-Kohn-Nirenberg (CKN for short) inequality \begin{eqnarray*} \bigg(\int_{\bbrN}|x|{-b(p+1)}|u|{p+1}dx\bigg){\frac{2}{p+1}}\leq C_{a,b,N}\int_{\bbrN}|x|{-2a}|\nabla u|2dx \end{eqnarray*} with $C_{a,b,N}$ being the optimal constant. It is known in \cite{WW2022} that $c_{BE}>0$. In this paper, we prove that the above variational problem has a minimizer for $N\geq2$ under the following two assumptions: \begin{enumerate} \item[$(i)$]\quad $a_c*\leq a<a_c$ and $a\leq b<a+1$, \item[$(ii)$]\quad $a<a_c*$ and $b_{FS}*(a)\leq b<a+1$, \end{enumerate} where $a_c*=\bigg(1-\sqrt{\frac{N-1}{2N}}\bigg)a_c$ and \begin{eqnarray*} b_{FS}*(a)=\frac{(a_c-a)N}{a_c-a+\sqrt{(a_c-a)2+N-1}}+a-a_c. \end{eqnarray*} Our results extend that of Konig in \cite{K2023} for the Sobolev inequality to the CKN inequality. Moreover, we believe that our assumptions~$(i)$ and $(ii)$ are optimal for the existence of minimizers of the above variational problem.