Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Shallow Encounters' Impact on Asteroid Deflection Prediction and Implications on Trajectory Design (2308.04613v3)

Published 8 Aug 2023 in astro-ph.EP, cs.SY, and eess.SY

Abstract: Analytical approximations are commonly employed in the initial trajectory design phase of a mission to rapidly explore a broad design space. In the context of an asteroid deflection mission, accurately predicting deflection is crucial to determining the spacecraft's trajectory that will produce the desired outcome. However, the dynamics involved are intricate, and simplistic models may not fully capture the system's complexity. This study assesses the precision and limitations of analytical models in predicting deflection, comparing them to more accurate numerical simulations. The findings reveal that encounters with perturbing bodies, even at significant distances (a dozen times the radii of the sphere of influence of the perturbing planet), can markedly disturb the deflected asteroid's trajectory, resulting in notable disparities between analytical and numerical predictions. The underlying reasons for this phenomenon are explained, and provisional general guidelines are provided to assist mission analysts in addressing such occurrences. By comprehending the impact of shallow encounters on deflection, this study equips designers with the knowledge to make informed decisions throughout the trajectory planning process, enhancing the efficiency and effectiveness of asteroid deflection missions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. J. P. Sanchez, C. Colombo, M. Vasile, and G. Radice, “Multicriteria comparison among several mitigation strategies for dangerous near-earth objects,” Journal of Guidance, Control, and Dynamics, vol. 32, no. 1, pp. 121–142, 2009.
  2. C. Weisbin, W. Lincoln, B. Wilcox, J. Brophy, P. Chodas, and B. Muirhead, “Comparative analysis of asteroid-deflection approaches,” in Proceedings…, pp. 1–16, IEEE Aerospace Conference, 2015.
  3. N. Thiry and M. Vasile, “Statistical multi-criteria evaluation of non-nuclear asteroid deflection methods,” Acta Astronautica, vol. 140, pp. 293–307, 2017.
  4. N. Anthony and M. R. Emami, “Asteroid engineering: The state-of-the-art of near-earth asteroids science and technology,” Progress in Aerospace Sciences, vol. 100, pp. 1–17, 2018.
  5. J. Sánchez-Lozano, M. Fernández-Martínez, A. Saucedo-Fernández, and J. M. Trigo-Rodriguez, “Evaluation of nea deflection techniques. a fuzzy multi-criteria decision making analysis for planetary defense,” Acta Astronautica, vol. 176, pp. 383–397, 2020.
  6. A. F. Cheng, J. Atchison, B. Kantsiper, A. S. Rivkin, A. Stickle, C. Reed, A. Galvez, I. Carnelli, P. Michel, and S. Ulamec, “Asteroid impact and deflection assessment mission,” Acta Astronautica, vol. 115, pp. 262–269, 2015.
  7. A. F. Cheng, A. M. Stickle, E. G. Fahnestock, E. Dotto, V. Della Corte, N. L. Chabot, and A. S. Rivkin, “Dart mission determination of momentum transfer: model of ejecta plume observations,” Icarus, vol. 352, p. 113989, 2020.
  8. E. Dotto et al., “Liciacube-the light italian cubesat for imaging of asteroids in support of the nasa dart mission towards asteroid (65803) didymos,” Planetary and Space Science, vol. 199, p. 105185, 2021.
  9. M. H. Chen, J. A. Atchison, D. J. Carrelli, P. S. Ericksen, Z. J. Fletcher, M. A. Haque, S. N. Jenkins, M. A. Jensenius, N. L. Mehta, T. C. Miller, D. O’Shaughnessy, C. A. Sawyer, E. A. Superfin, R. D. Tschiegg, and C. L. Reed, “Small-body maneuvering autonomous real-time navigation (smart nav): Guiding a spacecraft to didymos for nasaś double asteroid redirection test (dart),” in Proceedings…, p. 1, AAS Guidance and Control Conference, 2018.
  10. D. Izzo, “Global optimization and space pruning for spacecraft trajectory design,” in Spacecraft Trajectory Optimization (B. A. Conway, ed.), pp. 178–200, Cambridge University Press, 2010.
  11. T. J. Ahrens and A. W. Harris, “Deflection and fragmentation of near-earth asteroids,” Nature, vol. 360, no. 6403, p. 429, 1992.
  12. S.-Y. Park and I. M. Ross, “Two-body optimization for deflecting earth-crossing asteroids,” Journal of Guidance, Control, and Dynamics, vol. 22, no. 3, pp. 415–420, 1999.
  13. B. A. Conway, “Near-optimal deflection of earth-approaching asteroids,” Journal of Guidance, Control, and Dynamics, vol. 24, no. 5, pp. 1035–1037, 2001.
  14. I. M. Ross, S.-Y. Park, and S. D. V. Porter, “Gravitational effects of earth in optimizing? v for deflecting earth-crossing asteroids,” Journal of Spacecraft and Rockets, vol. 38, no. 5, pp. 759–764, 2001.
  15. S.-Y. Park and D. D. Mazanek, “Mission functionality for deflecting earth-crossing asteroids/comets,” Journal of Guidance, Control, and Dynamics, vol. 26, no. 5, pp. 734–742, 2003.
  16. A. Carusi, G. B. Valsecchi, G. D’Abramo, and A. Boattini, “Deflecting neos in route of collision with the earth,” Icarus, vol. 159, no. 2, pp. 417–422, 2002.
  17. Amsterdam: Elsevier, 1976.
  18. D. Izzo, “On the deflection of potentially hazardous objects,” in Proceedings…, pp. 05–141, AAS/AIAA Space Flight Mechanics Conference, 2005.
  19. D. Scheeres and R. Schweickart, “The mechanics of moving asteroids,” in Proceedings…, p. 1446, Planetary Defense Conference: Protecting Earth from Asteroids, 2004.
  20. D. Izzo, A. Bourdoux, R. Walker, and F. Ongaro, “Optimal trajectories for the impulsive deflection of near earth objects,” Acta Astronautica, vol. 59, no. 1, pp. 294–300, 2006.
  21. D. Izzo, “Optimization of interplanetary trajectories for impulsive and continuous asteroid deflection,” Journal of Guidance Control and Dynamics, vol. 30, no. 2, pp. 401–408, 2007.
  22. G. Valsecchi, A. Milani, G. F. Gronchi, and S. Chesley, “Resonant returns to close approaches: Analytical theory,” Astronomy & Astrophysics, vol. 408, no. 3, pp. 1179–1196, 2003.
  23. M. Vasile and C. Colombo, “Optimal impact strategies for asteroid deflection,” Journal of Guidance, Control, and Dynamics, vol. 31, no. 4, p. 858, 2008.
  24. C. Colombo, M. Vasile, and G. Radice, “Semi-analytical solution for the optimal low-thrust deflection of near-earth objects,” Journal of Guidance, Control, and Dynamics, vol. 32, no. 3, pp. 796–809, 2009.
  25. F. Zuiani, M. Vasile, and A. Gibbings, “Evidence-based robust design of deflection actions for near earth objects,” Celestial Mechanics and Dynamical Astronomy, vol. 114, pp. 107–136, 2012.
  26. R. B. Negri, J. P. Sanchez Cuartielles, and A. F. B. d. A. Prado, “Analysis of jupiter’s third-body perturbation effects on optimal asteroid deflection maneuvers,” in Proceedings…, p. 1, IAA Planetary Defense Conference, 6., 2019.
  27. R. B. Negri and A. F. Prado, “Generalizing the bicircular restricted four-body problem,” Journal of Guidance, Control, and Dynamics, vol. 43, no. 6, pp. 1173–1179, 2020.
  28. PhD thesis, National Institute for Space Research, São José dos Campos, 2022.
  29. R. B. Negri and A. F. Prado, “Circular restricted n-body problem,” Journal of Guidance, Control, and Dynamics, 2022.
  30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.
  31. F. Letizia, C. Colombo, J. Van den Eynde, R. Armellin, and R. Jehn, “Snappshot: Suite for the numerical analysis of planetary protection,” in Proceedings…, pp. 14–17, International Conference on Astrodynamics Tools and Techniques (ICATT), 2016.
  32. J. Sanchez and C. Colombo, “Impact hazard protection efficiency by a small kinetic impactor,” Journal of Spacecraft and Rockets, vol. 50, no. 2, pp. 380–393, 2013.
  33. V. Szebehely, “Theory of orbits: the restricted problem of three bodies,” tech. rep., Yale univ New Haven CT, 1967.
  34. D. Farnocchia, S. Chesley, A. Milani, G. Gronchi, and P. Chodas, “Orbits, long-term predictions, impact monitoring,” Asteroids IV, pp. 815–834, 2015.
  35. D. Nesvornỳ et al., “Identification and dynamical properties of asteroid families,” in Asteroids IV (P. MICHEL, F. E. DEMEO, and W. F. BOTTKE, eds.), pp. 297–321, University of Arizona Press, 2015.
  36. A. Carusi, “Early neo deflections: a viable, lower-energy option,” Earth, Moon, and Planets, vol. 96, no. 1, pp. 81–94, 2005.
  37. A. Carusi, E. Perozzi, and H. Scholl, “Mitigation strategy,” Comptes Rendus Physique, vol. 6, no. 3, pp. 367–374, 2005.
  38. A. Carusi, G. D’Abramo, and G. B. Valsecchi, “Orbital and mission planning constraints for the deflection of neos impacting on earth,” Icarus, vol. 194, no. 2, pp. 450–462, 2008.
  39. Springer Science & Business Media, 2001.
  40. B. S. Chagas, A. F. B. d. A. Prado, and O. C. Winter, “Deflecting an asteroid on a collision course with earth using a powered swing-by maneuver,” Symmetry, vol. 14, no. 8, p. 1658, 2022.
  41. Y. Qi and S. Xu, “Mechanical analysis of lunar gravity assist in the earth–moon system,” Astrophysics and Space Science, vol. 360, no. 2, pp. 1–15, 2015.
  42. R. B. Negri, “Dinâmica do swing-by: análise das limitações pela aproximação das cônicas conjugadas,” Master’s thesis, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 2018-02-23 2018.
  43. R. B. Negri, A. F. B. de Almeida Prado, and A. Sukhanov, “Studying the errors in the estimation of the variation of energy by the “patched-conics” model in the three-dimensional swing-by,” Celestial Mechanics and Dynamical Astronomy, vol. 129, no. 3, pp. 269–284, 2017.
  44. R. B. Negri, A. Sukhanov, and A. F. B. de Almeida Prado, “Lunar gravity assists using patched-conics approximation, three and four body problems,” Advances in Space Research, vol. 64, no. 1, pp. 42–63, 2019.
  45. S. D. Ross and D. J. Scheeres, “Multiple gravity assists, capture, and escape in the restricted three-body problem,” SIAM Journal on Applied Dynamical Systems, vol. 6, no. 3, pp. 576–596, 2007.
  46. P. Grover and S. Ross, “Designing trajectories in a planet-moon environment using the controlled keplerian map,” Journal of guidance, control, and dynamics, vol. 32, no. 2, pp. 437–444, 2009.
  47. A. Masat, C. Colombo, A. Boutonnet, et al., “Flyby dynamical characterisation with jacobian eigenvalues,” in 5th International Workshop on Key Topics in Orbit Propagation Applied to SSA (KePASSA 2022), 2022.
  48. S. Campagnola and R. P. Russell, “Endgame problem part 2: multibody technique and the tisserand-poincare graph,” Journal of Guidance, Control, and Dynamics, vol. 33, no. 2, pp. 476–486, 2010.

Summary

We haven't generated a summary for this paper yet.