Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Are Information criteria good enough to choose the right the number of regimes in Hidden Markov Models? (2308.04374v2)

Published 8 Aug 2023 in stat.ME

Abstract: Selecting the number of regimes in Hidden Markov models is an important problem. There are many criteria that are used to select this number, such as Akaike information criterion (AIC), Bayesian information criterion (BIC), integrated completed likelihood (ICL), deviance information criterion (DIC), and Watanabe-Akaike information criterion (WAIC), to name a few. In this article, we introduced goodness-of-fit tests for general Hidden Markov models with covariates, where the distribution of the observations is arbitrary, i.e., continuous, discrete, or a mixture of both. Then, a selection procedure is proposed based on this goodness-of-fit test. The main aim of this article is to compare the classical information criterion with the new criterion, when the outcome is either continuous, discrete or zero-inflated. Numerical experiments assess the finite sample performance of the goodness-of-fit tests, and comparisons between the different criteria are made.

Summary

We haven't generated a summary for this paper yet.