Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accurate, Explainable, and Private Models: Providing Recourse While Minimizing Training Data Leakage (2308.04341v1)

Published 8 Aug 2023 in cs.LG and cs.CR

Abstract: Machine learning models are increasingly utilized across impactful domains to predict individual outcomes. As such, many models provide algorithmic recourse to individuals who receive negative outcomes. However, recourse can be leveraged by adversaries to disclose private information. This work presents the first attempt at mitigating such attacks. We present two novel methods to generate differentially private recourse: Differentially Private Model (DPM) and Laplace Recourse (LR). Using logistic regression classifiers and real world and synthetic datasets, we find that DPM and LR perform well in reducing what an adversary can infer, especially at low FPR. When training dataset size is large enough, we find particular success in preventing privacy leakage while maintaining model and recourse accuracy with our novel LR method.

Citations (3)

Summary

We haven't generated a summary for this paper yet.