Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Preserving Sparsity and Privacy in Straggler-Resilient Distributed Matrix Computations (2308.04331v1)

Published 8 Aug 2023 in cs.IT, cs.CR, and math.IT

Abstract: Existing approaches to distributed matrix computations involve allocating coded combinations of submatrices to worker nodes, to build resilience to stragglers and/or enhance privacy. In this study, we consider the challenge of preserving input sparsity in such approaches to retain the associated computational efficiency enhancements. First, we find a lower bound on the weight of coding, i.e., the number of submatrices to be combined to obtain coded submatrices to provide the resilience to the maximum possible number of stragglers (for given number of nodes and their storage constraints). Next we propose a distributed matrix computation scheme which meets this exact lower bound on the weight of the coding. Further, we develop controllable trade-off between worker computation time and the privacy constraint for sparse input matrices in settings where the worker nodes are honest but curious. Numerical experiments conducted in Amazon Web Services (AWS) validate our assertions regarding straggler mitigation and computation speed for sparse matrices.

Citations (1)

Summary

We haven't generated a summary for this paper yet.