Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum limit to subdiffraction incoherent optical imaging. III. Numerical analysis (2308.04317v2)

Published 8 Aug 2023 in quant-ph

Abstract: To investigate the fundamental limit to far-field incoherent imaging, the prequels to this work [M. Tsang, Phys. Rev. A 99, 012305 (2019); 104, 052411 (2021)] have studied a quantum lower bound on the error of estimating an object moment and proved a scaling law for the bound with respect to the object size. As the scaling law was proved only in the asymptotic limit of vanishing object size, this work performs a numerical analysis of the quantum bound to verify that the law works well for nonzero object sizes in reality. We also use the numerical bounds to study the optimality of a measurement called spatial-mode demultiplexing or SPADE, showing that SPADE not only follows the scaling but is also numerically close to being optimal, at least for low-order moments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. Carl W. Helstrom, Quantum Detection and Estimation Theory (Academic Press, New York, 1976).
  2. Mankei Tsang, Ranjith Nair,  and Xiao-Ming Lu, “Quantum theory of superresolution for two incoherent optical point sources,” Physical Review X 6, 031033 (2016).
  3. Mankei Tsang, “Resolving starlight: a quantum perspective,” Contemporary Physics 60, 279–298 (2019a).
  4. Mankei Tsang, “Quantum limit to subdiffraction incoherent optical imaging,” Physical Review A 99, 012305 (2019b).
  5. Mankei Tsang, “Quantum limit to subdiffraction incoherent optical imaging. II. A parametric-submodel approach,” Physical Review A 104, 052411 (2021a).
  6. Sisi Zhou and Liang Jiang, “Modern description of Rayleigh’s criterion,” Physical Review A 99, 013808 (2019).
  7. Mankei Tsang, “Subdiffraction incoherent optical imaging via spatial-mode demultiplexing,” New Journal of Physics 19, 023054 (2017).
  8. Mankei Tsang, “Subdiffraction incoherent optical imaging via spatial-mode demultiplexing: Semiclassical treatment,” Physical Review A 97, 023830 (2018).
  9. Mankei Tsang, ‘‘Semiparametric estimation for incoherent optical imaging,” Physical Review Research 1, 033006 (2019c).
  10. Mankei Tsang, “Efficient superoscillation measurement for incoherent optical imaging,” IEEE Journal of Selected Topics in Signal Processing 17, 513–524 (2023a).
  11. Mankei Tsang, “Quantum noise spectroscopy as an incoherent imaging problem,” Physical Review A 107, 012611 (2023b).
  12. Evangelia Bisketzi, Dominic Branford,  and Animesh Datta, “Quantum limits of localisation microscopy,” New Journal of Physics 21, 123032 (2019).
  13. Zachary Dutton, Ronan Kerviche, Amit Ashok,  and Saikat Guha, “Attaining the quantum limit of superresolution in imaging an object’s length via predetection spatial-mode sorting,” Physical Review A 99, 033847 (2019).
  14. Sudhakar Prasad, “Quantum limited superresolution of extended sources in one and two dimensions,” Physical Review A 102, 063719 (2020).
  15. Sudhakar Prasad, “Quantum limits on localizing point objects against a uniformly bright disk,” Physical Review A 107, 032427 (2023).
  16. Mankei Tsang, “Quantum nonlocality in weak-thermal-light interferometry,” Physical Review Letters 107, 270402 (2011).
  17. Mankei Tsang, “Poisson Quantum Information,” Quantum 5, 527 (2021b).
  18. Jonathan Arthur Gross and Carlton M. Caves, “One from many: Estimating a function of many parameters,” Journal of Physics A: Mathematical and Theoretical 54, 014001 (2020).
  19. Masahito Hayashi, Quantum Information Theory: Mathematical Foundation, 2nd ed. (Springer, Berlin, 2017).
  20. Mankei Tsang, “Generalized conditional expectations for quantum retrodiction and smoothing,” Physical Review A 105, 042213 (2022).
  21. Mankei Tsang, “Operational meanings of a generalized conditional expectation in quantum metrology,” Quantum 7, 1162 (2023c), 2212.13162v6 .
  22. J. Řeháček, M. Paúr, B. Stoklasa, Z. Hradil,  and L. L. Sánchez-Soto, “Optimal measurements for resolution beyond the Rayleigh limit,” Optics Letters 42, 231–234 (2017).
  23. Alexander S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory (Scuola Normale Superiore Pisa, Pisa, Italy, 2011).
  24. Angelo Carollo, Bernardo Spagnolo, Alexander A. Dubkov,  and Davide Valenti, “On quantumness in multi-parameter quantum estimation,” Journal of Statistical Mechanics: Theory and Experiment 2019, 094010 (2019).
  25. Angelo Carollo, Bernardo Spagnolo, Alexander A. Dubkov,  and Davide Valenti, “Erratum: On quantumness in multi-parameter quantum estimation (2019 J. Stat. Mech. 094010),” Journal of Statistical Mechanics: Theory and Experiment 2020, 029902 (2020).
  26. Hiroshi Nagaoka, “A new approach to cramér-rao bounds for quantum state estimation,” IEICE Technical Report IT 89-42, 9–14 (1989).
  27. Masahito Hayashi, “On simultaneous measurement of noncommutative observables,” in Development of Infinite-Dimensional Noncommutative Analysis, RIMS Kokyuroku No. 1099, edited by Akihito Hora (Kyoto University, Kyoto, 1999) p. 96–118, in Japanese.
  28. Lorcán O. Conlon, Jun Suzuki, Ping Koy Lam,  and Syed M. Assad, “Efficient computation of the Nagaoka–Hayashi bound for multiparameter estimation with separable measurements,” npj Quantum Information 7, 1–8 (2021).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com