Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$w_{1+\infty}$ and Carrollian Holography (2308.03673v3)

Published 7 Aug 2023 in hep-th

Abstract: In a $1+2$D Carrollian conformal field theory, the Ward identities of the two local fields $S+_0$ and $S+_1$, entirely built out of the Carrollian conformal stress-tensor, contain respectively up to the leading and the subleading positive helicity soft graviton theorems in the $1+3$D asymptotically flat space-time. This work investigates how the subsubleading soft graviton theorem can be encoded into the Ward identity of a Carrollian conformal field $S+_2$. The operator product expansion (OPE) $S+_2S+_2$ is constructed using general Carrollian conformal symmetry principles and the OPE commutativity property, under the assumption that any time-independent, non-Identity field that is mutually local with $S+_0,S+_1,S+_2$ has positive Carrollian scaling dimension. It is found that, for this OPE to be consistent, another local field $S+_3$ must automatically exist in the theory. The presence of an infinite tower of local fields $S+_{k\geq3}$ is then revealed iteratively as a consistency condition for the $S+2S+{k-1}$ OPE. The general $S+_kS+_l$ OPE is similarly obtained and the symmetry algebra manifest in this OPE is found to be the Kac-Moody algebra of the wedge sub-algebra of $w_{1+\infty}$. The Carrollian time-coordinate plays the central role in this purely holographic construction. The 2D Celestial conformally soft graviton primary $Hk(z,\bar{z})$ is realized to be contained in the Carrollian conformal primary $S_{1-k}+(t,z,\bar{z})$. Finally, the existence of the infinite tower of fields $S+_{k}$ is shown to be directly related to an infinity of positive helicity soft graviton theorems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (70)
  1. G. ’t Hooft, “Dimensional reduction in quantum gravity,” Conf. Proc. C 930308 (1993), 284-296 [arXiv:gr-qc/9310026 [gr-qc]].
  2. L. Susskind, “The World as a hologram,” J. Math. Phys. 36 (1995), 6377-6396 doi:10.1063/1.531249 [arXiv:hep-th/9409089 [hep-th]].
  3. S. Pasterski, M. Pate and A. M. Raclariu, “Celestial Holography,” [arXiv:2111.11392 [hep-th]].
  4. S. Pasterski, S. H. Shao and A. Strominger, “Flat Space Amplitudes and Conformal Symmetry of the Celestial Sphere,” Phys. Rev. D 96 (2017) no.6, 065026 doi:10.1103/PhysRevD.96.065026 [arXiv:1701.00049 [hep-th]].
  5. S. Pasterski, S. H. Shao and A. Strominger, “Gluon Amplitudes as 2d Conformal Correlators,” Phys. Rev. D 96 (2017) no.8, 085006 doi:10.1103/PhysRevD.96.085006 [arXiv:1706.03917 [hep-th]].
  6. A. Bagchi, R. Basu, A. Kakkar and A. Mehra, “Flat Holography: Aspects of the dual field theory,” JHEP 12 (2016), 147 doi:10.1007/JHEP12(2016)147 [arXiv:1609.06203 [hep-th]].
  7. L. Donnay, A. Fiorucci, Y. Herfray and R. Ruzziconi, “Carrollian Perspective on Celestial Holography,” Phys. Rev. Lett. 129 (2022) no.7, 071602 doi:10.1103/PhysRevLett.129.071602 [arXiv:2202.04702 [hep-th]].
  8. A. Bagchi, S. Banerjee, R. Basu and S. Dutta, “Scattering Amplitudes: Celestial and Carrollian,” Phys. Rev. Lett. 128 (2022) no.24, 241601 doi:10.1103/PhysRevLett.128.241601 [arXiv:2202.08438 [hep-th]].
  9. L. Donnay, A. Fiorucci, Y. Herfray and R. Ruzziconi, “Bridging Carrollian and celestial holography,” Phys. Rev. D 107 (2023) no.12, 126027 doi:10.1103/PhysRevD.107.126027 [arXiv:2212.12553 [hep-th]].
  10. A. Saha, “Carrollian approach to 1 + 3D flat holography,” JHEP 06 (2023), 051 doi:10.1007/JHEP06(2023)051 [arXiv:2304.02696 [hep-th]].
  11. J. Salzer, “An Embedding Space Approach to Carrollian CFT Correlators for Flat Space Holography,” [arXiv:2304.08292 [hep-th]].
  12. K. Nguyen and P. West, “Carrollian conformal fields and flat holography,” [arXiv:2305.02884 [hep-th]].
  13. S. Weinberg, “Infrared photons and gravitons,” Phys. Rev. 140 (1965), B516-B524 doi:10.1103/PhysRev.140.B516
  14. F. Cachazo and A. Strominger, “Evidence for a New Soft Graviton Theorem,” [arXiv:1404.4091 [hep-th]].
  15. A. Strominger, “On BMS Invariance of Gravitational Scattering,” JHEP 07 (2014), 152 doi:10.1007/JHEP07(2014)152 [arXiv:1312.2229 [hep-th]].
  16. D. Kapec, P. Mitra, A. M. Raclariu and A. Strominger, “2D Stress Tensor for 4D Gravity,” Phys. Rev. Lett. 119 (2017) no.12, 121601 doi:10.1103/PhysRevLett.119.121601 [arXiv:1609.00282 [hep-th]].
  17. H. Bondi, M. G. J. van der Burg and A. W. K. Metzner, “Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems,” Proc. Roy. Soc. Lond. A 269 (1962), 21-52 doi:10.1098/rspa.1962.0161
  18. R. K. Sachs, “Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times,” Proc. Roy. Soc. Lond. A 270 (1962), 103-126 doi:10.1098/rspa.1962.0206
  19. T. He, V. Lysov, P. Mitra and A. Strominger, “BMS supertranslations and Weinberg’s soft graviton theorem,” JHEP 05 (2015), 151 doi:10.1007/JHEP05(2015)151 [arXiv:1401.7026 [hep-th]].
  20. G. Barnich and C. Troessaert, “Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited,” Phys. Rev. Lett. 105 (2010), 111103 doi:10.1103/PhysRevLett.105.111103 [arXiv:0909.2617 [gr-qc]].
  21. G. Barnich and C. Troessaert, “Supertranslations call for superrotations,” PoS CNCFG2010 (2010), 010 doi:10.22323/1.127.0010 [arXiv:1102.4632 [gr-qc]].
  22. G. Barnich and C. Troessaert, “BMS charge algebra,” JHEP 12 (2011), 105 doi:10.1007/JHEP12(2011)105 [arXiv:1106.0213 [hep-th]].
  23. D. Kapec, V. Lysov, S. Pasterski and A. Strominger, “Semiclassical Virasoro symmetry of the quantum gravity 𝒮𝒮\mathcal{S}caligraphic_S-matrix,” JHEP 08 (2014), 058 doi:10.1007/JHEP08(2014)058 [arXiv:1406.3312 [hep-th]].
  24. C. Duval, G. W. Gibbons and P. A. Horvathy, “Conformal Carroll groups and BMS symmetry,” Class. Quant. Grav. 31 (2014), 092001 doi:10.1088/0264-9381/31/9/092001 [arXiv:1402.5894 [gr-qc]].
  25. C. Duval, G. W. Gibbons and P. A. Horvathy, “Conformal Carroll groups,” J. Phys. A 47 (2014) no.33, 335204 doi:10.1088/1751-8113/47/33/335204 [arXiv:1403.4213 [hep-th]].
  26. H. Elvang, C. R. T. Jones and S. G. Naculich, “Soft Photon and Graviton Theorems in Effective Field Theory,” Phys. Rev. Lett. 118 (2017) no.23, 231601 doi:10.1103/PhysRevLett.118.231601 [arXiv:1611.07534 [hep-th]].
  27. A. Laddha and A. Sen, “Sub-subleading Soft Graviton Theorem in Generic Theories of Quantum Gravity,” JHEP 10 (2017), 065 doi:10.1007/JHEP10(2017)065 [arXiv:1706.00759 [hep-th]].
  28. A. B. Zamolodchikov, “Infinite Additional Symmetries in Two-Dimensional Conformal Quantum Field Theory,” Theor. Math. Phys. 65 (1985), 1205-1213 doi:10.1007/BF01036128
  29. A. Bagchi, R. Chatterjee, R. Kaushik, A. Saha and D. Sarkar, “Non-Lorentzian Kač-Moody algebras,” JHEP 03 (2023), 041 doi:10.1007/JHEP03(2023)041 [arXiv:2301.04686 [hep-th]].
  30. T. Klose, T. McLoughlin, D. Nandan, J. Plefka and G. Travaglini, “Double-Soft Limits of Gluons and Gravitons,” JHEP 07 (2015), 135 doi:10.1007/JHEP07(2015)135 [arXiv:1504.05558 [hep-th]].
  31. S. Banerjee, S. Ghosh and P. Paul, “MHV graviton scattering amplitudes and current algebra on the celestial sphere,” JHEP 02 (2021), 176 doi:10.1007/JHEP02(2021)176 [arXiv:2008.04330 [hep-th]].
  32. A. B. Zamolodchikov, A. B. Zamolodchikov and I. M. Khalatnikov, “PHYSICS REVIEWS. VOL. 10, PT. 4: CONFORMAL FIELD THEORY AND CRITICAL PHENOMENA IN TWO-DIMENSIONAL SYSTEMS,”
  33. A. Saha, “Intrinsic approach to 1 + 1D Carrollian Conformal Field Theory,” JHEP 12 (2022), 133 doi:10.1007/JHEP12(2022)133 [arXiv:2207.11684 [hep-th]].
  34. L. Donnay, A. Puhm and A. Strominger, “Conformally Soft Photons and Gravitons,” JHEP 01 (2019), 184 doi:10.1007/JHEP01(2019)184 [arXiv:1810.05219 [hep-th]].
  35. A. Puhm, “Conformally Soft Theorem in Gravity,” JHEP 09 (2020), 130 doi:10.1007/JHEP09(2020)130 [arXiv:1905.09799 [hep-th]].
  36. A. Guevara, E. Himwich, M. Pate and A. Strominger, “Holographic symmetry algebras for gauge theory and gravity,” JHEP 11 (2021), 152 doi:10.1007/JHEP11(2021)152 [arXiv:2103.03961 [hep-th]].
  37. M. Pate, A. M. Raclariu, A. Strominger and E. Y. Yuan, “Celestial operator products of gluons and gravitons,” Rev. Math. Phys. 33 (2021) no.09, 2140003 doi:10.1142/S0129055X21400031 [arXiv:1910.07424 [hep-th]].
  38. A. Ball, S. A. Narayanan, J. Salzer and A. Strominger, “Perturbatively exact w1+∞ asymptotic symmetry of quantum self-dual gravity,” JHEP 01 (2022), 114 doi:10.1007/JHEP01(2022)114 [arXiv:2111.10392 [hep-th]].
  39. B. Chen, R. Liu, H. Sun and Y. f. Zheng, “Constructing Carrollian Field Theories from Null Reduction,” [arXiv:2301.06011 [hep-th]].
  40. C. N. Pope, “Lectures on W algebras and W gravity,” [arXiv:hep-th/9112076 [hep-th]].
  41. I. Bakas, “The Large n Limit of Extended Conformal Symmetries,” Phys. Lett. B 228 (1989), 57 doi:10.1016/0370-2693(89)90525-X
  42. A. Strominger, “w(1+infinity) and the Celestial Sphere,” [arXiv:2105.14346 [hep-th]].
  43. Y. Hamada and G. Shiu, “Infinite Set of Soft Theorems in Gauge-Gravity Theories as Ward-Takahashi Identities,” Phys. Rev. Lett. 120 (2018) no.20, 201601 doi:10.1103/PhysRevLett.120.201601 [arXiv:1801.05528 [hep-th]].
  44. Z. Z. Li, H. H. Lin and S. Q. Zhang, “Infinite Soft Theorems from Gauge Symmetry,” Phys. Rev. D 98 (2018) no.4, 045004 doi:10.1103/PhysRevD.98.045004 [arXiv:1802.03148 [hep-th]].
  45. S. Banerjee, “Symmetries of free massless particles and soft theorems,” Gen. Rel. Grav. 51 (2019) no.9, 128 doi:10.1007/s10714-019-2609-z [arXiv:1804.06646 [hep-th]].
  46. S. Pasterski and S. H. Shao, “Conformal basis for flat space amplitudes,” Phys. Rev. D 96 (2017) no.6, 065022 doi:10.1103/PhysRevD.96.065022 [arXiv:1705.01027 [hep-th]].
  47. S. Banerjee and S. Pasterski, “Revisiting the shadow stress tensor in celestial CFT,” JHEP 04 (2023), 118 doi:10.1007/JHEP04(2023)118 [arXiv:2212.00257 [hep-th]].
  48. C. Itzykson and J. B. Zuber, “Quantum Field Theory,” McGraw-Hill, 1980, ISBN 978-0-486-44568-7
  49. B. Chen, R. Liu and Y. f. Zheng, “On higher-dimensional Carrollian and Galilean conformal field theories,” SciPost Phys. 14 (2023) no.5, 088 doi:10.21468/SciPostPhys.14.5.088 [arXiv:2112.10514].
  50. A. Strominger and A. Zhiboedov, “Gravitational Memory, BMS Supertranslations and Soft Theorems,” JHEP 01 (2016), 086 doi:10.1007/JHEP01(2016)086 [arXiv:1411.5745 [hep-th]].
  51. S. Pasterski, A. Strominger and A. Zhiboedov, “New Gravitational Memories,” JHEP 12 (2016), 053 doi:10.1007/JHEP12(2016)053 [arXiv:1502.06120 [hep-th]].
  52. A. Strominger, “Lectures on the Infrared Structure of Gravity and Gauge Theory,” [arXiv:1703.05448 [hep-th]].
  53. A. Fotopoulos and T. R. Taylor, “Primary Fields in Celestial CFT,” JHEP 10 (2019), 167 doi:10.1007/JHEP10(2019)167 [arXiv:1906.10149 [hep-th]].
  54. X. Bekaert and B. Oblak, “Massless scalars and higher-spin BMS in any dimension,” JHEP 11 (2022), 022 doi:10.1007/JHEP11(2022)022 [arXiv:2209.02253 [hep-th]].
  55. W. B. Liu and J. Long, “Symmetry group at future null infinity: Scalar theory,” Phys. Rev. D 107 (2023) no.12, 126002 doi:10.1103/PhysRevD.107.126002 [arXiv:2210.00516 [hep-th]].
  56. A. M. Polyakov, “Quantum Gravity in Two-Dimensions,” Mod. Phys. Lett. A 2 (1987), 893 doi:10.1142/S0217732387001130
  57. A. Fotopoulos, S. Stieberger, T. R. Taylor and B. Zhu, “Extended BMS Algebra of Celestial CFT,” JHEP 03 (2020), 130 doi:10.1007/JHEP03(2020)130 [arXiv:1912.10973 [hep-th]].
  58. S. Banerjee, S. Ghosh and R. Gonzo, “BMS symmetry of celestial OPE,” JHEP 04 (2020), 130 doi:10.1007/JHEP04(2020)130 [arXiv:2002.00975 [hep-th]].
  59. S. Banerjee, S. Ghosh and P. Paul, “(Chiral) Virasoro invariance of the tree-level MHV graviton scattering amplitudes,” JHEP 09 (2022), 236 doi:10.1007/JHEP09(2022)236 [arXiv:2108.04262 [hep-th]].
  60. E. Himwich, M. Pate and K. Singh, “Celestial operator product expansions and w1+∞ symmetry for all spins,” JHEP 01 (2022), 080 doi:10.1007/JHEP01(2022)080 [arXiv:2108.07763 [hep-th]].
  61. S. Banerjee, S. Ghosh and S. S. Samal, “Subsubleading soft graviton symmetry and MHV graviton scattering amplitudes,” JHEP 08 (2021), 067 doi:10.1007/JHEP08(2021)067 [arXiv:2104.02546 [hep-th]].
  62. L. Freidel, D. Pranzetti and A. M. Raclariu, “Sub-subleading soft graviton theorem from asymptotic Einstein’s equations,” JHEP 05 (2022), 186 doi:10.1007/JHEP05(2022)186 [arXiv:2111.15607 [hep-th]].
  63. E. Conde and P. Mao, “BMS Supertranslations and Not So Soft Gravitons,” JHEP 05 (2017), 060 doi:10.1007/JHEP05(2017)060 [arXiv:1612.08294 [hep-th]].
  64. L. Freidel, D. Pranzetti and A. M. Raclariu, “Higher spin dynamics in gravity and w1+∞\infty∞ celestial symmetries,” Phys. Rev. D 106 (2022) no.8, 086013 doi:10.1103/PhysRevD.106.086013 [arXiv:2112.15573 [hep-th]].
  65. S. Banerjee, H. Kulkarni and P. Paul, “An infinite family of w1+∞ invariant theories on the celestial sphere,” JHEP 05 (2023), 063 doi:10.1007/JHEP05(2023)063 [arXiv:2301.13225 [hep-th]].
  66. M. Campiglia and A. Laddha, “Asymptotic charges in massless QED revisited: A view from Spatial Infinity,” JHEP 05 (2019), 207 doi:10.1007/JHEP05(2019)207 [arXiv:1810.04619 [hep-th]].
  67. E. Hijano and D. Neuenfeld, “Soft photon theorems from CFT Ward identites in the flat limit of AdS/CFT,” JHEP 11 (2020), 009 doi:10.1007/JHEP11(2020)009 [arXiv:2005.03667 [hep-th]].
  68. L. P. de Gioia and A. M. Raclariu, “Eikonal approximation in celestial CFT,” JHEP 03 (2023), 030 doi:10.1007/JHEP03(2023)030 [arXiv:2206.10547 [hep-th]].
  69. A. Bagchi, P. Dhivakar and S. Dutta, “AdS Witten diagrams to Carrollian correlators,” JHEP 04 (2023), 135 doi:10.1007/JHEP04(2023)135 [arXiv:2303.07388 [hep-th]].
  70. L. P. de Gioia and A. M. Raclariu, “Celestial Sector in CFT: Conformally Soft Symmetries,” [arXiv:2303.10037 [hep-th]].
Citations (7)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com