Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Notably Inaccessible -- Data Driven Understanding of Data Science Notebook (In)Accessibility (2308.03241v1)

Published 7 Aug 2023 in cs.HC, cs.CY, and cs.SE

Abstract: Computational notebooks, tools that facilitate storytelling through exploration, data analysis, and information visualization, have become the widely accepted standard in the data science community. These notebooks have been widely adopted through notebook software such as Jupyter, Datalore and Google Colab, both in academia and industry. While there is extensive research to learn how data scientists use computational notebooks, identify their pain points, and enable collaborative data science practices, very little is known about the various accessibility barriers experienced by blind and visually impaired (BVI) users using these notebooks. BVI users are unable to use computational notebook interfaces due to (1) inaccessibility of the interface, (2) common ways in which data is represented in these interfaces, and (3) inability for popular libraries to provide accessible outputs. We perform a large scale systematic analysis of 100000 Jupyter notebooks to identify various accessibility challenges in published notebooks affecting the creation and consumption of these notebooks. Through our findings, we make recommendations to improve accessibility of the artifacts of a notebook, suggest authoring practices, and propose changes to infrastructure to make notebooks accessible. An accessible PDF can be obtained at https://blvi.dev/noteably-inaccessible-paper

Citations (1)

Summary

We haven't generated a summary for this paper yet.