Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

libMBD: A general-purpose package for scalable quantum many-body dispersion calculations (2308.03140v1)

Published 6 Aug 2023 in physics.chem-ph, cond-mat.mtrl-sci, and physics.comp-ph

Abstract: Many-body dispersion (MBD) is a powerful framework to treat van der Waals (vdW) dispersion interactions in density-functional theory and related atomistic modeling methods. Several independent implementations of MBD with varying degree of functionality exist across a number of electronic structure codes, which both limits the current users of those codes and complicates dissemination of new variants of MBD. Here, we develop and document libMBD, a library implementation of MBD that is functionally complete, efficient, easy to integrate with any electronic structure code, and already integrated in FHI-aims, DFTB+, VASP, Q-Chem, CASTEP, and Quantum ESPRESSO. libMBD is written in modern Fortran with bindings to C and Python, uses MPI/ScaLAPACK for parallelization, and implements MBD for both finite and periodic systems, with analytical gradients with respect to all input parameters. The computational cost has asymptotic cubic scaling with system size, and evaluation of gradients only changes the prefactor of the scaling law, with libMBD exhibiting strong scaling up to 256 processor cores. Other MBD properties beyond energy and gradients can be calculated with libMBD, such as the charge-density polarization, first-order Coulomb correction, the dielectric function, or the order-by-order expansion of the energy in the dipole interaction. Calculations on supramolecular complexes with MBD-corrected electronic structure methods and a meta-review of previous applications of MBD demonstrate the broad applicability of the libMBD package to treat vdW interactions.

Citations (7)

Summary

We haven't generated a summary for this paper yet.