A randomised lattice rule algorithm with pre-determined generating vector and random number of points for Korobov spaces with $0 < α\le 1/2$ (2308.03138v3)
Abstract: In previous work (Kuo, Nuyens, Wilkes, 2023), we showed that a lattice rule with a pre-determined generating vector but random number of points can achieve the near optimal convergence of $O(n{-\alpha-1/2+\epsilon})$, $\epsilon > 0$, for the worst case expected error, commonly referred to as the randomised error, for numerical integration of high-dimensional functions in the Korobov space with smoothness $\alpha > 1/2$. Compared to the optimal deterministic rate of $O(n{-\alpha+\epsilon})$, $\epsilon > 0$, such a randomised algorithm is capable of an extra half in the rate of convergence. In this paper, we show that a pre-determined generating vector also exists in the case of $0 < \alpha \le 1/2$. Also here we obtain the near optimal convergence of $O(n{-\alpha-1/2+\epsilon})$, $\epsilon > 0$; or in more detail, we obtain $O(\sqrt{r} \, n{-\alpha-1/2+1/(2r)+\epsilon'})$ which holds for any choices of $\epsilon' > 0$ and $r \in \mathbb{N}$ with $r > 1/(2\alpha)$.
- N. S. Bakhvalov. An estimate of the mean remainder term in quadrature formulae. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 1:64–77, 1961.
- D. Berend and T. Tassa. Improved bounds on Bell numbers and on moments of sums of random variables. Probability and Mathematical Statistics, 30(2):185–205, 2010.
- C. J. de La Vallée Poussin. Recherches analytiques sur la théorie des nombres premiers. Première partie. La fonction ζ(s)𝜁𝑠\zeta(s)italic_ζ ( italic_s ) de Riemann et les nombres premiers en général, suivi d’un appendice sur des réflexions applicables à une formule donnée par Riemann. Ann. Soc. Scient. Bruxelles, deuxième partie, 20:183–256, 1896.
- C. J. de La Vallée Poussin. Sur la fonction ζ(s)𝜁𝑠\zeta(s)italic_ζ ( italic_s ) de Riemann et le nombre des nombres premiers inférieurs à une limite donnée. Mémoires couronnés et autres Mémoires in-8 publiés par l’Académie royale de Belgique, 49:74, 1899.
- J. Dick. Higher order scrambled digital nets achieve the optimal rate of the root mean square error for smooth integrands. The Annals of Statistics, 39(3):1372–1398, 2011.
- Component-by-component construction of randomized rank-1 lattice rules achieving almost the optimal randomized error rate. Mathematics of Computation, 91:2771–2801, 2022.
- Lattice Rules: Numerical Integration, Approximation, and Discrepancy. Springer International Publishing, 2022.
- K. K. Frolov. Upper error bounds for quadrature formulas on function classes. Dokl. Akad. Nauk SSSR, 231(4):818–821, 1976.
- T. Goda and P. L’Ecuyer. Construction-free median quasi-Monte Carlo rules for function spaces with unspecified smoothness and general weights. SIAM Journal on Scientific Computing, 44(4):A2765–A2788, 2022.
- D. Krieg and E. Novak. A universal algorithm for multivariate integration. Foundations of Computational Mathematics, 17:895–916, 2017.
- Lattice rules with random n𝑛nitalic_n achieve nearly the optimal 𝒪(n−α−1/2)𝒪superscript𝑛𝛼12\mathcal{O}(n^{-\alpha-1/2})caligraphic_O ( italic_n start_POSTSUPERSCRIPT - italic_α - 1 / 2 end_POSTSUPERSCRIPT ) error independently of the dimension. Journal of Approximation Theory, 240:96–113, 2019.
- Random-prime–fixed-vector randomised lattice-based algorithm for high-dimensional integration. Journal of Complexity, 2023. To appear.
- C. Mariconda and A. Tonolo. Discrete Calculus: Methods for Counting. Springer International Publishing, 2016.
- H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods. Society for Industrial and Applied Mathematics, 1992.
- E. Novak and H. Woźniakowski. Tractability of Multivariate Problems: Volume I: Linear information. EMS Tracts in Mathematics. European Mathematical Society, 2008.
- E. Novak and H. Woźniakowski. Tractability of Multivariate Problems: Volume II: Standard Information for Functionals. EMS Tracts in Mathematics. European Mathematical Society, 2010.
- D. Nuyens. The construction of good lattice rules and polynomial lattice rules, pages 223–256. De Gruyter, Berlin, Boston, 2014.
- D. Nuyens and Y. Suzuki. Scaled lattice rules for integration on ℝdsuperscriptℝ𝑑\mathbb{R}^{d}blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT achieving higher-order convergence with error analysis in terms of orthogonal projections onto periodic spaces. Mathematics of Computation, 92:307–347, 2023.
- A. B. Owen. Randomly permuted (t,m,s)𝑡𝑚𝑠(t,m,s)( italic_t , italic_m , italic_s )-nets and (t,s)𝑡𝑠(t,s)( italic_t , italic_s )-sequences. In H. Niederreiter and P. J.-S. Shiue, editors, Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, pages 299–317, New York, NY, 1995. Springer New York.
- A. B. Owen. Monte Carlo variance of scrambled net quadrature. SIAM Journal on Numerical Analysis, 34(5):1884–1910, 1997.
- I. H. Sloan and S. Joe. Lattice Methods for Multiple Integration. Oxford University Press, 1994.
- On the step-by-step construction of quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces. Mathematics of Computation, 71:1609–1640, 2002.
- I. H. Sloan and H. Woźniakowski. When are quasi-Monte Carlo algorithms efficient for high dimensional integrals? Journal of Complexity, 14(1):1–33, 1998.
- I. H. Sloan and H. Woźniakowski. Tractability of multivariate integration for weighted Korobov classes. Journal of Complexity, 17(4):697–721, 2001.
- M. Ullrich. A Monte Carlo method for integration of multivariate smooth functions. SIAM Journal on Numerical Analysis, 55:1188–1200, 2017.