Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A randomised lattice rule algorithm with pre-determined generating vector and random number of points for Korobov spaces with $0 < α\le 1/2$ (2308.03138v3)

Published 6 Aug 2023 in math.NA and cs.NA

Abstract: In previous work (Kuo, Nuyens, Wilkes, 2023), we showed that a lattice rule with a pre-determined generating vector but random number of points can achieve the near optimal convergence of $O(n{-\alpha-1/2+\epsilon})$, $\epsilon > 0$, for the worst case expected error, commonly referred to as the randomised error, for numerical integration of high-dimensional functions in the Korobov space with smoothness $\alpha > 1/2$. Compared to the optimal deterministic rate of $O(n{-\alpha+\epsilon})$, $\epsilon > 0$, such a randomised algorithm is capable of an extra half in the rate of convergence. In this paper, we show that a pre-determined generating vector also exists in the case of $0 < \alpha \le 1/2$. Also here we obtain the near optimal convergence of $O(n{-\alpha-1/2+\epsilon})$, $\epsilon > 0$; or in more detail, we obtain $O(\sqrt{r} \, n{-\alpha-1/2+1/(2r)+\epsilon'})$ which holds for any choices of $\epsilon' > 0$ and $r \in \mathbb{N}$ with $r > 1/(2\alpha)$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. N. S. Bakhvalov. An estimate of the mean remainder term in quadrature formulae. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 1:64–77, 1961.
  2. D. Berend and T. Tassa. Improved bounds on Bell numbers and on moments of sums of random variables. Probability and Mathematical Statistics, 30(2):185–205, 2010.
  3. C. J. de La Vallée Poussin. Recherches analytiques sur la théorie des nombres premiers. Première partie. La fonction ζ⁢(s)𝜁𝑠\zeta(s)italic_ζ ( italic_s ) de Riemann et les nombres premiers en général, suivi d’un appendice sur des réflexions applicables à une formule donnée par Riemann. Ann. Soc. Scient. Bruxelles, deuxième partie, 20:183–256, 1896.
  4. C. J. de La Vallée Poussin. Sur la fonction ζ⁢(s)𝜁𝑠\zeta(s)italic_ζ ( italic_s ) de Riemann et le nombre des nombres premiers inférieurs à une limite donnée. Mémoires couronnés et autres Mémoires in-8 publiés par l’Académie royale de Belgique, 49:74, 1899.
  5. J. Dick. Higher order scrambled digital nets achieve the optimal rate of the root mean square error for smooth integrands. The Annals of Statistics, 39(3):1372–1398, 2011.
  6. Component-by-component construction of randomized rank-1 lattice rules achieving almost the optimal randomized error rate. Mathematics of Computation, 91:2771–2801, 2022.
  7. Lattice Rules: Numerical Integration, Approximation, and Discrepancy. Springer International Publishing, 2022.
  8. K. K. Frolov. Upper error bounds for quadrature formulas on function classes. Dokl. Akad. Nauk SSSR, 231(4):818–821, 1976.
  9. T. Goda and P. L’Ecuyer. Construction-free median quasi-Monte Carlo rules for function spaces with unspecified smoothness and general weights. SIAM Journal on Scientific Computing, 44(4):A2765–A2788, 2022.
  10. D. Krieg and E. Novak. A universal algorithm for multivariate integration. Foundations of Computational Mathematics, 17:895–916, 2017.
  11. Lattice rules with random n𝑛nitalic_n achieve nearly the optimal 𝒪⁢(n−α−1/2)𝒪superscript𝑛𝛼12\mathcal{O}(n^{-\alpha-1/2})caligraphic_O ( italic_n start_POSTSUPERSCRIPT - italic_α - 1 / 2 end_POSTSUPERSCRIPT ) error independently of the dimension. Journal of Approximation Theory, 240:96–113, 2019.
  12. Random-prime–fixed-vector randomised lattice-based algorithm for high-dimensional integration. Journal of Complexity, 2023. To appear.
  13. C. Mariconda and A. Tonolo. Discrete Calculus: Methods for Counting. Springer International Publishing, 2016.
  14. H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods. Society for Industrial and Applied Mathematics, 1992.
  15. E. Novak and H. Woźniakowski. Tractability of Multivariate Problems: Volume I: Linear information. EMS Tracts in Mathematics. European Mathematical Society, 2008.
  16. E. Novak and H. Woźniakowski. Tractability of Multivariate Problems: Volume II: Standard Information for Functionals. EMS Tracts in Mathematics. European Mathematical Society, 2010.
  17. D. Nuyens. The construction of good lattice rules and polynomial lattice rules, pages 223–256. De Gruyter, Berlin, Boston, 2014.
  18. D. Nuyens and Y. Suzuki. Scaled lattice rules for integration on ℝdsuperscriptℝ𝑑\mathbb{R}^{d}blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT achieving higher-order convergence with error analysis in terms of orthogonal projections onto periodic spaces. Mathematics of Computation, 92:307–347, 2023.
  19. A. B. Owen. Randomly permuted (t,m,s)𝑡𝑚𝑠(t,m,s)( italic_t , italic_m , italic_s )-nets and (t,s)𝑡𝑠(t,s)( italic_t , italic_s )-sequences. In H. Niederreiter and P. J.-S. Shiue, editors, Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, pages 299–317, New York, NY, 1995. Springer New York.
  20. A. B. Owen. Monte Carlo variance of scrambled net quadrature. SIAM Journal on Numerical Analysis, 34(5):1884–1910, 1997.
  21. I. H. Sloan and S. Joe. Lattice Methods for Multiple Integration. Oxford University Press, 1994.
  22. On the step-by-step construction of quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces. Mathematics of Computation, 71:1609–1640, 2002.
  23. I. H. Sloan and H. Woźniakowski. When are quasi-Monte Carlo algorithms efficient for high dimensional integrals? Journal of Complexity, 14(1):1–33, 1998.
  24. I. H. Sloan and H. Woźniakowski. Tractability of multivariate integration for weighted Korobov classes. Journal of Complexity, 17(4):697–721, 2001.
  25. M. Ullrich. A Monte Carlo method for integration of multivariate smooth functions. SIAM Journal on Numerical Analysis, 55:1188–1200, 2017.
Citations (4)

Summary

We haven't generated a summary for this paper yet.