Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Comprehensive Analysis of Real-World Image Captioning and Scene Identification (2308.02833v1)

Published 5 Aug 2023 in cs.CV

Abstract: Image captioning is a computer vision task that involves generating natural language descriptions for images. This method has numerous applications in various domains, including image retrieval systems, medicine, and various industries. However, while there has been significant research in image captioning, most studies have focused on high quality images or controlled environments, without exploring the challenges of real-world image captioning. Real-world image captioning involves complex and dynamic environments with numerous points of attention, with images which are often very poor in quality, making it a challenging task, even for humans. This paper evaluates the performance of various models that are built on top of different encoding mechanisms, language decoders and training procedures using a newly created real-world dataset that consists of over 800+ images of over 65 different scene classes, built using MIT Indoor scenes dataset. This dataset is captioned using the IC3 approach that generates more descriptive captions by summarizing the details that are covered by standard image captioning models from unique view-points of the image.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
X Twitter Logo Streamline Icon: https://streamlinehq.com