Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Voting-Stacking Ensemble of Inception Networks for Cervical Cytology Classification (2308.02781v2)

Published 5 Aug 2023 in cs.CV and cs.NI

Abstract: Cervical cancer is one of the most severe diseases threatening women's health. Early detection and diagnosis can significantly reduce cancer risk, in which cervical cytology classification is indispensable. Researchers have recently designed many networks for automated cervical cancer diagnosis, but the limited accuracy and bulky size of these individual models cannot meet practical application needs. To address this issue, we propose a Voting-Stacking ensemble strategy, which employs three Inception networks as base learners and integrates their outputs through a voting ensemble. The samples misclassified by the ensemble model generate a new training set on which a linear classification model is trained as the meta-learner and performs the final predictions. In addition, a multi-level Stacking ensemble framework is designed to improve performance further. The method is evaluated on the SIPakMed, Herlev, and Mendeley datasets, achieving accuracies of 100%, 100%, and 100%, respectively. The experimental results outperform the current state-of-the-art (SOTA) methods, demonstrating its potential for reducing screening workload and helping pathologists detect cervical cancer.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Linyi Qian (4 papers)
  2. Qian Huang (55 papers)
  3. Yulin Chen (134 papers)
  4. Junzhou Chen (23 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.