Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ChatGPT for GTFS: Benchmarking LLMs on GTFS Understanding and Retrieval (2308.02618v2)

Published 4 Aug 2023 in cs.IR, cs.AI, cs.CL, and cs.LG

Abstract: The General Transit Feed Specification (GTFS) standard for publishing transit data is ubiquitous. GTFS being tabular data, with information spread across different files, necessitates specialized tools or packages to retrieve information. Concurrently, the use of LLMs(LLMs) for text and information retrieval is growing. The idea of this research is to see if the current widely adopted LLMs (ChatGPT) are able to understand GTFS and retrieve information from GTFS using natural language instructions without explicitly providing information. In this research, we benchmark OpenAI's GPT-3.5-Turbo and GPT-4 LLMs which are the backbone of ChatGPT. ChatGPT demonstrates a reasonable understanding of GTFS by answering 59.7% (GPT-3.5-Turbo) and 73.3% (GPT-4) of our multiple-choice questions (MCQ) correctly. Furthermore, we evaluated the LLMs on information extraction tasks using a filtered GTFS feed containing four routes. We found that program synthesis techniques outperformed zero-shot approaches, achieving up to 93% (90%) accuracy for simple queries and 61% (41%) for complex ones using GPT-4 (GPT-3.5-Turbo).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Saipraneeth Devunuri (6 papers)
  2. Shirin Qiam (3 papers)
  3. Lewis Lehe (4 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.