Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hierarchical Semi-Supervised Learning Framework for Surgical Gesture Segmentation and Recognition Based on Multi-Modality Data (2308.02529v1)

Published 31 Jul 2023 in cs.CV

Abstract: Segmenting and recognizing surgical operation trajectories into distinct, meaningful gestures is a critical preliminary step in surgical workflow analysis for robot-assisted surgery. This step is necessary for facilitating learning from demonstrations for autonomous robotic surgery, evaluating surgical skills, and so on. In this work, we develop a hierarchical semi-supervised learning framework for surgical gesture segmentation using multi-modality data (i.e. kinematics and vision data). More specifically, surgical tasks are initially segmented based on distance characteristics-based profiles and variance characteristics-based profiles constructed using kinematics data. Subsequently, a Transformer-based network with a pre-trained `ResNet-18' backbone is used to extract visual features from the surgical operation videos. By combining the potential segmentation points obtained from both modalities, we can determine the final segmentation points. Furthermore, gesture recognition can be implemented based on supervised learning. The proposed approach has been evaluated using data from the publicly available JIGSAWS database, including Suturing, Needle Passing, and Knot Tying tasks. The results reveal an average F1 score of 0.623 for segmentation and an accuracy of 0.856 for recognition.

Summary

We haven't generated a summary for this paper yet.