Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Communication-Efficient Decentralized Multi-Agent Reinforcement Learning for Cooperative Adaptive Cruise Control (2308.02345v5)

Published 4 Aug 2023 in eess.SY and cs.SY

Abstract: Connected and autonomous vehicles (CAVs) promise next-gen transportation systems with enhanced safety, energy efficiency, and sustainability. One typical control strategy for CAVs is the so-called cooperative adaptive cruise control (CACC) where vehicles drive in platoons and cooperate to achieve safe and efficient transportation. In this study, we formulate CACC as a multi-agent reinforcement learning (MARL) problem. Diverging from existing MARL methods that use centralized training and decentralized execution which require not only a centralized communication mechanism but also dense inter-agent communication during training and online adaptation, we propose a fully decentralized MARL framework for enhanced efficiency and scalability. In addition, a quantization-based communication scheme is proposed to reduce the communication overhead without significantly degrading the control performance. This is achieved by employing randomized rounding numbers to quantize each piece of communicated information and only communicating non-zero components after quantization. Extensive experimentation in two distinct CACC settings reveals that the proposed MARL framework consistently achieves superior performance over several contemporary benchmarks in terms of both communication efficiency and control efficacy. In the appendix, we show that our proposed framework's applicability extends beyond CACC, showing promise for broader intelligent transportation systems with intricate action and state spaces.

Citations (15)

Summary

We haven't generated a summary for this paper yet.