Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Labelling of Affective Video Datasets via Few-Shot & Multi-Task Contrastive Learning (2308.02173v1)

Published 4 Aug 2023 in cs.CV, cs.HC, and cs.MM

Abstract: Whilst deep learning techniques have achieved excellent emotion prediction, they still require large amounts of labelled training data, which are (a) onerous and tedious to compile, and (b) prone to errors and biases. We propose Multi-Task Contrastive Learning for Affect Representation (\textbf{MT-CLAR}) for few-shot affect inference. MT-CLAR combines multi-task learning with a Siamese network trained via contrastive learning to infer from a pair of expressive facial images (a) the (dis)similarity between the facial expressions, and (b) the difference in valence and arousal levels of the two faces. We further extend the image-based MT-CLAR framework for automated video labelling where, given one or a few labelled video frames (termed \textit{support-set}), MT-CLAR labels the remainder of the video for valence and arousal. Experiments are performed on the AFEW-VA dataset with multiple support-set configurations; moreover, supervised learning on representations learnt via MT-CLAR are used for valence, arousal and categorical emotion prediction on the AffectNet and AFEW-VA datasets. The results show that valence and arousal predictions via MT-CLAR are very comparable to the state-of-the-art (SOTA), and we significantly outperform SOTA with a support-set $\approx$6\% the size of the video dataset.

Citations (5)

Summary

We haven't generated a summary for this paper yet.