Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Shape by Grinding: Cutting-surface-aware Model-based Reinforcement Learning (2308.02150v1)

Published 4 Aug 2023 in cs.RO

Abstract: Object shaping by grinding is a crucial industrial process in which a rotating grinding belt removes material. Object-shape transition models are essential to achieving automation by robots; however, learning such a complex model that depends on process conditions is challenging because it requires a significant amount of data, and the irreversible nature of the removal process makes data collection expensive. This paper proposes a cutting-surface-aware Model-Based Reinforcement Learning (MBRL) method for robotic grinding. Our method employs a cutting-surface-aware model as the object's shape transition model, which in turn is composed of a geometric cutting model and a cutting-surface-deviation model, based on the assumption that the robot action can specify the cutting surface made by the tool. Furthermore, according to the grinding resistance theory, the cutting-surface-deviation model does not require raw shape information, making the model's dimensions smaller and easier to learn than a naive shape transition model directly mapping the shapes. Through evaluation and comparison by simulation and real robot experiments, we confirm that our MBRL method can achieve high data efficiency for learning object shaping by grinding and also provide generalization capability for initial and target shapes that differ from the training data.

Citations (4)

Summary

We haven't generated a summary for this paper yet.