Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Straggler Mitigation and Latency Optimization in Blockchain-based Hierarchical Federated Learning (2308.01296v1)

Published 2 Aug 2023 in cs.DC

Abstract: Cloud-edge-device hierarchical federated learning (HFL) has been recently proposed to achieve communication-efficient and privacy-preserving distributed learning. However, there exist several critical challenges, such as the single point of failure and potential stragglers in both edge servers and local devices. To resolve these issues, we propose a decentralized and straggler-tolerant blockchain-based HFL (BHFL) framework. Specifically, a Raft-based consortium blockchain is deployed on edge servers to provide a distributed and trusted computing environment for global model aggregation in BHFL. To mitigate the influence of stragglers on learning, we propose a novel aggregation method, HieAvg, which utilizes the historical weights of stragglers to estimate the missing submissions. Furthermore, we optimize the overall latency of BHFL by jointly considering the constraints of global model convergence and blockchain consensus delay. Theoretical analysis and experimental evaluation show that our proposed BHFL based on HieAvg can converge in the presence of stragglers, which performs better than the traditional methods even when the loss function is non-convex and the data on local devices are non-independent and identically distributed (non-IID).

Summary

We haven't generated a summary for this paper yet.