Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Multi-Source Data Fusion-based Semantic Segmentation Model for Relic Landslide Detection (2308.01251v3)

Published 2 Aug 2023 in cs.CV

Abstract: As a natural disaster, landslide often brings tremendous losses to human lives, so it urgently demands reliable detection of landslide risks. When detecting relic landslides that present important information for landslide risk warning, problems such as visual blur and small-sized dataset cause great challenges when using remote sensing images. To extract accurate semantic features, a hyper-pixel-wise contrastive learning augmented segmentation network (HPCL-Net) is proposed, which augments the local salient feature extraction from boundaries of landslides through HPCL and fuses heterogeneous information in the semantic space from high-resolution remote sensing images and digital elevation model data. For full utilization of precious samples, a global hyper-pixel-wise sample pair queues-based contrastive learning method is developed, which includes the construction of global queues that store hyper-pixel-wise samples and the updating scheme of a momentum encoder, reliably enhancing the extraction ability of semantic features. The proposed HPCL-Net is evaluated on the Loess Plateau relic landslide dataset and experimental results verify that the proposed HPCL-Net greatly outperforms existing models, where the mIoU is increased from 0.620 to 0.651, the Landslide IoU is improved from 0.334 to 0.394 and the F1score is enhanced from 0.501 to 0.565.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. A. C. Mondini, M. Santangelo, M. Rocchetti, E. Rossetto, A. Manconi, and O. Monserrat, “Sentinel-1 sar amplitude imagery for rapid landslide detection,” Remote sensing, vol. 11, no. 7, p. 760, 2019.
  2. D. Hui, Z. M. Sheng, Z. W. Hong, and Z. Tao, “High-resolution remote sensing image recognition of loess landslide: A case study of yan ’an, shaanxi province,” Northwest geology, vol. 52, no. 3, pp. 231–239, 2019.
  3. R. Jie, J. Fei, X. Hua, W. Chao, and Z. Hong, “Landslide detection based on dem matching,” Journal of Surveying and Mapping Science and technology, vol. 35, no. 5, pp. 477–484, 2018.
  4. Z. Cao, K. Fu, X. Lu, W. Diao, H. Sun, M. Yan, H. Yu, and X. Sun, “End-to-end dsm fusion networks for semantic segmentation in high-resolution aerial images,” IEEE Geoscience and Remote Sensing Letters, pp. 1766–1770, 2019.
  5. R. N. Keyport, T. Oommen, T. R. Martha, K. Sajinkumar, and J. S. Gierke, “A comparative analysis of pixel-and object-based detection of landslides from very high-resolution images,” International Journal of Applied Earth Observation and Geoinformation, vol. 64, pp. 1–11, 2018.
  6. W. Zhao, A. Li, X. Nan, Z. Zhang, and G. Lei, “Postearthquake landslides mapping from landsat-8 data for the 2015 nepal earthquake using a pixel-based change detection method,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 10, no. 5, pp. 1758–1768, 2017.
  7. Z. Li, W. Shi, P. Lu, L. Yan, Q. Wang, and Z. Miao, “Landslide mapping from aerial photographs using change detection-based markov random field,” Remote Sensing of Environment, vol. 187, pp. 76–90, 2016.
  8. A. Stumpf and N. Kerle, “Object-oriented mapping of landslides using random forests,” Remote Sensing of Environment, vol. 115, no. 10, pp. 2564–2577, 2011.
  9. N. Prakash, A. Manconi, and S. Loew, “Mapping landslides on eo data: Performance of deep learning models vs. traditional machine learning models,” Remote Sensing, vol. 12, no. 3, p. 346, 2020.
  10. T. Blaschke, “Object based image analysis for remote sensing,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 65, no. 1, pp. 2–16, 2010.
  11. T. R. Martha, N. Kerle, V. Jetten, C. J. van Westen, and K. V. Kumar, “Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods,” Geomorphology, vol. 116, no. 1-2, pp. 24–36, 2010.
  12. T. Lahousse, K. Chang, and Y. Lin, “Landslide mapping with multi-scale object-based image analysis–a case study in the baichi watershed, taiwan,” Natural Hazards and Earth System Sciences, vol. 11, no. 10, pp. 2715–2726, 2011.
  13. D. Hölbling, P. Füreder, F. Antolini, F. Cigna, N. Casagli, and S. Lang, “A semi-automated object-based approach for landslide detection validated by persistent scatterer interferometry measures and landslide inventories,” Remote Sensing, vol. 4, no. 5, pp. 1310–1336, 2012.
  14. K. Pawłuszek, S. Marczak, A. Borkowski, and P. Tarolli, “Multi-aspect analysis of object-oriented landslide detection based on an extended set of lidar-derived terrain features,” ISPRS International Journal of Geo-Information, vol. 8, no. 8, p. 321, 2019.
  15. F. Chen, B. Yu, and B. Li, “A practical trial of landslide detection from single-temporal landsat8 images using contour-based proposals and random forest: a case study of national nepal,” Landslides, vol. 15, no. 3, pp. 453–464, 2018.
  16. J. Dou, A. P. Yunus, D. T. Bui, A. Merghadi, M. Sahana, Z. Zhu, C.-W. Chen, Z. Han, and B. T. Pham, “Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, japan,” Landslides, vol. 17, no. 3, pp. 641–658, 2020.
  17. V.-H. Nhu, A. Mohammadi, H. Shahabi, B. B. Ahmad, N. Al-Ansari, A. Shirzadi, M. Geertsema, V. R Kress, S. Karimzadeh, K. Valizadeh Kamran et al., “Landslide detection and susceptibility modeling on cameron highlands (malaysia): a comparison between random forest, logistic regression and logistic model tree algorithms,” Forests, vol. 11, no. 8, p. 830, 2020.
  18. H. Yu, Y. Ma, L. Wang, Y. Zhai, and X. Wang, “A landslide intelligent detection method based on cnn and rsg_r,” in Proceedings of the IEEE conference on International Conference on Mechatronics and Automation (ICMA), 2017, pp. 40–44.
  19. B. Fang, G. Chen, L. Pan, R. Kou, and L. Wang, “Gan-based siamese framework for landslide inventory mapping using bi-temporal optical remote sensing images,” IEEE Geoscience and Remote Sensing Letters, vol. 18, no. 3, pp. 391–395, 2020.
  20. S. Ji, D. Yu, C. Shen, W. Li, and Q. Xu, “Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks,” Landslides, vol. 17, no. 6, pp. 1337–1352, 2020.
  21. L. P. Soares, H. C. Dias, and C. H. Grohmann, “Landslide segmentation with u-net: Evaluating different sampling methods and patch sizes,” arXiv preprint arXiv:2007.06672, 2020.
  22. Y. JU, Q. XU, S. JIN, W. LI, X. DONG, and Q. GUO, “Automatic object detection of loess landslide based on deep learning,” Journal of Wuhan University, vol. 45, no. 11, pp. 1747–1755, 2020.
  23. H. Cai, T. Chen, R. Niu, and A. Plaza, “Landslide detection using densely connected convolutional networks and environmental conditions,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 5235–5247, 2021.
  24. O. Ghorbanzadeh and T. Blaschke, “Optimizing sample patches selection of cnn to improve the miou on landslide detection.” in GISTAM, 2019, pp. 33–40.
  25. B. Du, Z. Zhao, X. Hu, G. Wu, L. Han, L. Sun, and Q. Gao, “Landslide susceptibility prediction based on image semantic segmentation,” Computers & Geosciences, p. 104860, 2021.
  26. Z. Yongshuang, W. Ruian, G. Changbao, W. Lichao, Y. Xin, and Y. Zhihua, “Progress and prospect of research on reactivation of ancient landslides,” Progress in Earth Sciences, vol. 33, no. 7, pp. 728–740, 2018.
  27. Geotech, “Landslides,” https://www.geotech.hr/en/landslides/.
  28. C. Peng, Y. Li, L. Jiao, Y. Chen, and R. Shang, “Densely based multi-scale and multi-modal fully convolutional networks for high-resolution remote-sensing image semantic segmentation,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, pp. 2612–2626, 2019.
  29. L. Zeng, Y. Du, H. Lin, J. Wang, J. Yin, and J. Yang, “A novel region-based image registration method for multisource remote sensing images via cnn,” IEEE journal of selected topics in applied earth observations and remote sensing, pp. 1821–1831, 2020.
  30. X. Liu, Y. Peng, Z. Lu, W. Li, J. Yu, D. Ge, and W. Xiang, “Feature-fusion segmentation network for landslide detection using high-resolution remote sensing images and digital elevation model data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–14, 2023.
  31. Q. Hou, D. Zhou, and J. Feng, “Coordinate attention for efficient mobile network design,” in Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition, 2021, pp. 13 713–13 722.
  32. Z. Wu, Y. Xiong, S. X. Yu, and D. Lin, “Unsupervised feature learning via non-parametric instance discrimination,” in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2018, pp. 3733–3742.
  33. K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for unsupervised visual representation learning,” in Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition, 2020, pp. 9729–9738.
  34. T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive learning of visual representations,” in International conference on machine learning.   PMLR, 2020, pp. 1597–1607.
  35. C. Zhang, J. Wang, Z. Huang, L. Kong, X. Qu, N. Cheng, and J. Xiao, “Supervised contrastive meta-learning for few-shot classification,” in 2022 IEEE 24th Int Conf on High Performance Computing & Communications; 8th Int Conf on Data Science & Systems; 20th Int Conf on Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), 2022, pp. 1736–1742.
  36. C. Zang and F. Wang, “Scehr: Supervised contrastive learning for clinical risk prediction using electronic health records,” in 2021 IEEE International Conference on Data Mining (ICDM), 2021, pp. 857–866.
  37. W. Wang, T. Zhou, F. Yu, J. Dai, E. Konukoglu, and L. Van Gool, “Exploring cross-image pixel contrast for semantic segmentation,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 7303–7313.
  38. S. Lee, Y. Lee, G. Lee, and S. Hwang, “Supervised contrastive embedding for medical image segmentation,” IEEE Access, vol. 9, pp. 138 403–138 414, 2021.
  39. Z. Cai, L. Lin, H. He, and X. Tang, “Corolla: An efficient multi-modality fusion framework with supervised contrastive learning for glaucoma grading,” in 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), 2022, pp. 1–4.
  40. L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-decoder with atrous separable convolution for semantic image segmentation,” in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 801–818.
  41. J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141.
  42. L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 834–848, 2018.
  43. P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C. Liu, and D. Krishnan, “Supervised contrastive learning,” Advances in Neural Information Processing Systems, vol. 33, pp. 18 661–18 673, 2020.
  44. J. Robinson, C.-Y. Chuang, S. Sra, and S. Jegelka, “Contrastive learning with hard negative samples,” arXiv preprint arXiv:2010.04592, 2020.
  45. L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous convolution for semantic image segmentation,” arXiv preprint arXiv:1706.05587, 2017.
  46. R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-cam: Visual explanations from deep networks via gradient-based localization,” in 2017 IEEE International Conference on Computer Vision, 2017, pp. 618–626.

Summary

We haven't generated a summary for this paper yet.