Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A new adaptive local polynomial density estimation procedure on complicated domains (2308.01156v3)

Published 2 Aug 2023 in math.ST, math.PR, stat.AP, stat.ME, and stat.TH

Abstract: This paper presents a novel approach for pointwise estimation of multivariate density functions on known domains of arbitrary dimensions using nonparametric local polynomial estimators. Our method is highly flexible, as it applies to both simple domains, such as open connected sets, and more complicated domains that are not star-shaped around the point of estimation. This enables us to handle domains with sharp concavities, holes, and local pinches, such as polynomial sectors. Additionally, we introduce a data-driven selection rule based on the general ideas of Goldenshluger and Lepski. Our results demonstrate that the local polynomial estimators are minimax under a $L2$ risk across a wide range of H\"older-type functional classes. In the adaptive case, we provide oracle inequalities and explicitly determine the convergence rate of our statistical procedure. Simulations on polynomial sectors show that our oracle estimates outperform those of the most popular alternative method, found in the sparr package for the R software. Our statistical procedure is implemented in an online R package which is readily accessible.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (64)
  1. {barticle}[author] \bauthor\bsnmAitchison, \bfnmJ.\binitsJ. and \bauthor\bsnmLauder, \bfnmI. J.\binitsI. J. (\byear1985). \btitleKernel density estimation for compositional data. \bjournalJ. Roy. Statist. Soc. Ser. C \bvolume34 \bpages129–137. \bdoi10.2307/2347365 \endbibitem
  2. {barticle}[author] \bauthor\bsnmAmmous, \bfnmS.\binitsS., \bauthor\bsnmDedecker, \bfnmJ.\binitsJ. and \bauthor\bsnmDuval, \bfnmC.\binitsC. (\byear2023). \btitleAdaptive directional estimator of the density in ℝdsuperscriptℝ𝑑\mathbb{R}^{d}blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT for independent and mixing sequences. \bjournalPreprint \bpages1–28. \bnote\hrefhttps://arxiv.org/abs/2305.13572arXiv:2305.13572v1. \endbibitem
  3. {barticle}[author] \bauthor\bsnmBabu, \bfnmG. J.\binitsG. J. and \bauthor\bsnmChaubey, \bfnmY. P.\binitsY. P. (\byear2006). \btitleSmooth estimation of a distribution and density function on a hypercube using Bernstein polynomials for dependent random vectors. \bjournalStatist. Probab. Lett. \bvolume76 \bpages959–969. \bdoi10.1016/j.spl.2005.10.031 \bmrnumber2270097 \endbibitem
  4. {bmisc}[author] \bauthor\bsnmBarry, \bfnmR.\binitsR. (\byear2021). \btitlelatticeDensity: Density Estimation and Nonparametric Regression on Irregular Regions. \bnoteR package version 1.2.6, available online at \hrefhttps://cran.r-project.org/src/contrib/Archive/latticeDensityhttps://cran.r-project.org/src/contrib/Archive/latticeDensity [This link was accessed on 2024–05–15.]. \endbibitem
  5. {barticle}[author] \bauthor\bsnmBarry, \bfnmR. P.\binitsR. P. and \bauthor\bsnmMcIntyre, \bfnmJ.\binitsJ. (\byear2011). \btitleEstimating animal densities and home range in regions with irregular boundaries and holes: A lattice-based alternative to the kernel density estimator. \bjournalEcol. Model. \bvolume222 \bpages1666–1672. \bdoi10.1016/j.ecolmodel.2011.02.016 \endbibitem
  6. {barticle}[author] \bauthor\bsnmBarry, \bfnmR. P.\binitsR. P. and \bauthor\bsnmMcIntyre, \bfnmJ.\binitsJ. (\byear2020). \btitleLattice-based methods for regression and density estimation on complicated multidimensional regions. \bjournalEnviron. Ecol. Stat. \bvolume27 \bpages571–589. \bdoi10.1007/s10651-020-00459-z \endbibitem
  7. {barticle}[author] \bauthor\bsnmBertin, \bfnmK.\binitsK., \bauthor\bsnmEl Kolei, \bfnmS.\binitsS. and \bauthor\bsnmKlutchnikoff, \bfnmN.\binitsN. (\byear2019). \btitleAdaptive density estimation on bounded domains. \bjournalAnn. Inst. Henri Poincaré Probab. Stat. \bvolume55 \bpages1916–1947. \bdoi10.1214/18-AIHP938 \bmrnumber4029144 \endbibitem
  8. {barticle}[author] \bauthor\bsnmBertin, \bfnmK.\binitsK. and \bauthor\bsnmKlutchnikoff, \bfnmN.\binitsN. (\byear2014). \btitleAdaptive estimation of a density function using beta kernels. \bjournalESAIM Probab. Stat. \bvolume18 \bpages400–417. \bdoi10.1051/ps/2014010 \bmrnumber3333996 \endbibitem
  9. {barticle}[author] \bauthor\bsnmBertin, \bfnmK.\binitsK. and \bauthor\bsnmKlutchnikoff, \bfnmN.\binitsN. (\byear2017). \btitlePointwise adaptive estimation of the marginal density of a weakly dependent process. \bjournalJ. Statist. Plann. Inference \bvolume187 \bpages115–129. \bdoi10.1016/j.jspi.2017.03.003 \bmrnumber3638047 \endbibitem
  10. {barticle}[author] \bauthor\bsnmBotev, \bfnmZ. I.\binitsZ. I., \bauthor\bsnmGrotowski, \bfnmJ. F.\binitsJ. F. and \bauthor\bsnmKroese, \bfnmD. P.\binitsD. P. (\byear2010). \btitleKernel density estimation via diffusion. \bjournalAnn. Statist. \bvolume38 \bpages2916–2957. \bdoi10.1214/10-AOS799 \bmrnumber2722460 \endbibitem
  11. {barticle}[author] \bauthor\bsnmBrunel, \bfnmV. E.\binitsV. E. (\byear2018). \btitleMethods for estimation of convex sets. \bjournalStatist. Sci. \bvolume33 \bpages615–632. \bdoi10.1214/18-STS669 \bmrnumber3881211 \endbibitem
  12. {barticle}[author] \bauthor\bsnmCattaneo, \bfnmM. D.\binitsM. D., \bauthor\bsnmJansson, \bfnmM.\binitsM. and \bauthor\bsnmMa, \bfnmX.\binitsX. (\byear2020). \btitleSimple local polynomial density estimators. \bjournalJ. Amer. Statist. Assoc. \bvolume115 \bpages1449–1455. \bdoi10.1080/01621459.2019.1635480 \bmrnumber4143477 \endbibitem
  13. {barticle}[author] \bauthor\bsnmCattaneo, \bfnmM. D.\binitsM. D., \bauthor\bsnmJansson, \bfnmM.\binitsM. and \bauthor\bsnmMa, \bfnmX.\binitsX. (\byear2022). \btitlelpdensity: Local Polynomial Density Estimation and Inference. \bjournalJ. Stat. Softw. \bvolume101 \bpages1–25. \bdoi10.18637/jss.v101.i02 \endbibitem
  14. {barticle}[author] \bauthor\bsnmChen, \bfnmS. X.\binitsS. X. (\byear1999). \btitleBeta kernel estimators for density functions. \bjournalComput. Statist. Data Anal. \bvolume31 \bpages131–145. \bdoi10.1016/S0167-9473(99)00010-9 \bmrnumber1718494 \endbibitem
  15. {barticle}[author] \bauthor\bsnmCheng, \bfnmM. Y.\binitsM. Y., \bauthor\bsnmFan, \bfnmJ.\binitsJ. and \bauthor\bsnmMarron, \bfnmJ. S.\binitsJ. S. (\byear1997). \btitleOn automatic boundary corrections. \bjournalAnn. Statist. \bvolume25 \bpages1691–1708. \bdoi10.1214/aos/1031594737 \bmrnumber1463570 \endbibitem
  16. {barticle}[author] \bauthor\bsnmCline, \bfnmD. B. H.\binitsD. B. H. and \bauthor\bsnmHart, \bfnmJ. D.\binitsJ. D. (\byear1991). \btitleKernel estimation of densities with discontinuities or discontinuous derivatives. \bjournalStatistics \bvolume22 \bpages69–84. \bdoi10.1080/02331889108802286 \bmrnumber1097362 \endbibitem
  17. {barticle}[author] \bauthor\bsnmDavies, \bfnmT. M.\binitsT. M., \bauthor\bsnmMarshall, \bfnmJ. C.\binitsJ. C. and \bauthor\bsnmHazelton, \bfnmM. L.\binitsM. L. (\byear2018). \btitleTutorial on kernel estimation of continuous spatial and spatiotemporal relative risk. \bjournalStat. Med. \bvolume37 \bpages1191–1221. \bdoi10.1002/sim.7577 \bmrnumber3777968 \endbibitem
  18. {bmisc}[author] \bauthor\bsnmDavies, \bfnmT. M.\binitsT. M. and \bauthor\bsnmMarshall, \bfnmJ. C.\binitsJ. C. (\byear2023). \btitlesparr: Spatial and Spatiotemporal Relative Risk. \bnoteR package version 2.3-10, available online at \hrefhttps://cran.r-project.org/web/packages/sparr/index.htmlhttps://cran.r-project.org/web/packages/sparr/index.html [This link was accessed on 2024–05–15.]. \endbibitem
  19. {barticle}[author] \bauthor\bsnmFan, \bfnmJ.\binitsJ. and \bauthor\bsnmGijbels, \bfnmI.\binitsI. (\byear1992). \btitleVariable bandwidth and local linear regression smoothers. \bjournalAnn. Statist. \bvolume20 \bpages2008–2036. \bdoi10.1214/aos/1176348900 \bmrnumber1193323 \endbibitem
  20. {bbook}[author] \bauthor\bsnmFan, \bfnmJ.\binitsJ. and \bauthor\bsnmGijbels, \bfnmI.\binitsI. (\byear1996). \btitleLocal Polynomial Modelling and Its Applications. \bseriesMonographs on Statistics and Applied Probability \bvolume66. \bpublisherChapman & Hall, London. \bdoi10.1007/978-1-4899-3150-4 \bmrnumber1383587 \endbibitem
  21. {barticle}[author] \bauthor\bsnmGasser, \bfnmT.\binitsT., \bauthor\bsnmMüller, \bfnmH. G.\binitsH. G. and \bauthor\bsnmMammitzsch, \bfnmV.\binitsV. (\byear1985). \btitleKernels for nonparametric curve estimation. \bjournalJ. Roy. Statist. Soc. Ser. B \bvolume47 \bpages238–252. \bdoi10.1111/j.2517-6161.1985.tb01350.x \bmrnumber816088 \endbibitem
  22. {barticle}[author] \bauthor\bsnmGawronski, \bfnmW.\binitsW. and \bauthor\bsnmStadtmüller, \bfnmU.\binitsU. (\byear1981). \btitleSmoothing histograms by means of lattice and continuous distributions. \bjournalMetrika \bvolume28 \bpages155–164. \bdoi10.1007/BF01902889 \bmrnumber638651 \endbibitem
  23. {barticle}[author] \bauthor\bsnmGhosal, \bfnmS.\binitsS. (\byear2001). \btitleConvergence rates for density estimation with Bernstein polynomials. \bjournalAnn. Statist. \bvolume29 \bpages1264–1280. \bdoi10.1214/aos/1013203453 \bmrnumber1873330 \endbibitem
  24. {barticle}[author] \bauthor\bsnmGoldenshluger, \bfnmA.\binitsA. and \bauthor\bsnmLepski, \bfnmO.\binitsO. (\byear2008). \btitleUniversal pointwise selection rule in multivariate function estimation. \bjournalBernoulli \bvolume14 \bpages1150–1190. \bdoi10.3150/08-BEJ144 \bmrnumber2543590 \endbibitem
  25. {barticle}[author] \bauthor\bsnmGoldenshluger, \bfnmA.\binitsA. and \bauthor\bsnmLepski, \bfnmO.\binitsO. (\byear2009). \btitleStructural adaptation via 𝕃psubscript𝕃𝑝\mathbb{L}_{p}blackboard_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-norm oracle inequalities. \bjournalProbab. Theory Related Fields \bvolume143 \bpages41–71. \bdoi10.1007/s00440-007-0119-5 \bmrnumber2449122 \endbibitem
  26. {barticle}[author] \bauthor\bsnmGoldenshluger, \bfnmA.\binitsA. and \bauthor\bsnmLepski, \bfnmO.\binitsO. (\byear2011). \btitleBandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality. \bjournalAnn. Statist. \bvolume39 \bpages1608–1632. \bdoi10.1214/11-AOS883 \bmrnumber2850214 \endbibitem
  27. {barticle}[author] \bauthor\bsnmGoldenshluger, \bfnmA.\binitsA. and \bauthor\bsnmLepski, \bfnmO.\binitsO. (\byear2014). \btitleOn adaptive minimax density estimation on Rdsuperscript𝑅𝑑R^{d}italic_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT. \bjournalProbab. Theory Related Fields \bvolume159 \bpages479–543. \bdoi10.1007/s00440-013-0512-1 \bmrnumber3230001 \endbibitem
  28. {barticle}[author] \bauthor\bsnmGu, \bfnmC.\binitsC. (\byear1993). \btitleSmoothing spline density estimation: a dimensionless automatic algorithm. \bjournalJ. Amer. Statist. Assoc. \bvolume88 \bpages495–504. \bdoi10.1080/01621459.1993.10476300 \bmrnumber1224374 \endbibitem
  29. {barticle}[author] \bauthor\bsnmGu, \bfnmC.\binitsC. and \bauthor\bsnmQiu, \bfnmC.\binitsC. (\byear1993). \btitleSmoothing spline density estimation: theory. \bjournalAnn. Statist. \bvolume21 \bpages217–234. \bdoi10.1214/aos/1176349023 \bmrnumber1212174 \endbibitem
  30. {barticle}[author] \bauthor\bsnmGuillas, \bfnmS.\binitsS. and \bauthor\bsnmLai, \bfnmM. J.\binitsM. J. (\byear2010). \btitleBivariate splines for spatial functional regression models. \bjournalJ. Nonparametr. Stat. \bvolume22 \bpages477–497. \bdoi10.1080/10485250903323180 \bmrnumber2662608 \endbibitem
  31. {barticle}[author] \bauthor\bsnmJones, \bfnmM. C.\binitsM. C. (\byear1993). \btitleSimple boundary correction for kernel density estimation. \bjournalStat Comput . \bvolume3 \bpages135–146. \bdoi10.1007/BF00147776 \endbibitem
  32. {barticle}[author] \bauthor\bsnmJones, \bfnmM. C.\binitsM. C. and \bauthor\bsnmFoster, \bfnmP. J.\binitsP. J. (\byear1996). \btitleA simple nonnegative boundary correction method for kernel density estimation. \bjournalStatist. Sinica \bvolume6 \bpages1005–1013. \bnote\hrefhttps://www.jstor.org/stable/24306056https://www.jstor.org/stable/24306056. \bmrnumber1422417 \endbibitem
  33. {barticle}[author] \bauthor\bsnmKlemelä, \bfnmJ.\binitsJ. (\byear2009). \btitleMultivariate histograms with data-dependent partitions. \bjournalStatist. Sinica \bvolume19 \bpages159–176. \bnote\hrefhttps://www.jstor.org/stable/24308713https://www.jstor.org/stable/24308713. \bmrnumber2487883 \endbibitem
  34. {barticle}[author] \bauthor\bsnmKlutchnikoff, \bfnmN.\binitsN. (\byear2014). \btitlePointwise adaptive estimation of a multivariate function. \bjournalMath. Methods Statist. \bvolume23 \bpages132–150. \bdoi10.3103/S1066530714020045 \bmrnumber3224636 \endbibitem
  35. {bbook}[author] \bauthor\bsnmLai, \bfnmM. J.\binitsM. J. and \bauthor\bsnmSchumaker, \bfnmL. L.\binitsL. L. (\byear2007). \btitleSpline Functions on Triangulations. \bseriesEncyclopedia of Mathematics and its Applications \bvolume110. \bpublisherCambridge University Press, Cambridge. \bdoi10.1017/CBO9780511721588 \bmrnumber2355272 \endbibitem
  36. {barticle}[author] \bauthor\bsnmLai, \bfnmM. J.\binitsM. J. and \bauthor\bsnmWang, \bfnmL.\binitsL. (\byear2013). \btitleBivariate penalized splines for regression. \bjournalStatist. Sinica \bvolume23 \bpages1399–1417. \bdoi10.5705/ss.2010.278 \bmrnumber3114719 \endbibitem
  37. {barticle}[author] \bauthor\bsnmLepski, \bfnmO.\binitsO. (\byear2015). \btitleAdaptive estimation over anisotropic functional classes via oracle approach. \bjournalAnn. Statist. \bvolume43 \bpages1178–1242. \bdoi10.1214/14-AOS1306 \bmrnumber3346701 \endbibitem
  38. {barticle}[author] \bauthor\bsnmLepskii, \bfnmO. V.\binitsO. V. (\byear1991). \btitleOn a problem of adaptive estimation in Gaussian white noise. \bjournalTheory Probab. Appl. \bvolume35 \bpages454–466. \bdoi10.1137/1135065 \endbibitem
  39. {barticle}[author] \bauthor\bsnmLindgren, \bfnmF.\binitsF., \bauthor\bsnmRue, \bfnmH.\binitsH. and \bauthor\bsnmLindström, \bfnmJ.\binitsJ. (\byear2011). \btitleAn explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. \bjournalJ. R. Stat. Soc. Ser. B Stat. Methodol. \bvolume73 \bpages423–498. \bdoi10.1111/j.1467-9868.2011.00777.x \bmrnumber2853727 \endbibitem
  40. {barticle}[author] \bauthor\bsnmLiu, \bfnmY.\binitsY. and \bauthor\bsnmWu, \bfnmC.\binitsC. (\byear2019). \btitlePoint-wise estimation for anisotropic densities. \bjournalJ. Multivariate Anal. \bvolume171 \bpages112–125. \bmrnumber3892029 \endbibitem
  41. {barticle}[author] \bauthor\bsnmMarron, \bfnmJ. S.\binitsJ. S. and \bauthor\bsnmRuppert, \bfnmD.\binitsD. (\byear1994). \btitleTransformations to reduce boundary bias in kernel density estimation. \bjournalJ. Roy. Statist. Soc. Ser. B \bvolume56 \bpages653–671. \bdoi10.1111/j.2517-6161.1994.tb02006.x \bmrnumber1293239 \endbibitem
  42. {barticle}[author] \bauthor\bsnmMcIntyre, \bfnmJ.\binitsJ. and \bauthor\bsnmBarry, \bfnmR. P.\binitsR. P. (\byear2018). \btitleA lattice-based smoother for regions with irregular boundaries and holes. \bjournalJ. Comput. Graph. Statist. \bvolume27 \bpages360–367. \bdoi10.1080/10618600.2017.1375935 \bmrnumber3816271 \endbibitem
  43. {barticle}[author] \bauthor\bsnmMcSwiggan, \bfnmG.\binitsG., \bauthor\bsnmBaddeley, \bfnmA.\binitsA. and \bauthor\bsnmNair, \bfnmG.\binitsG. (\byear2017). \btitleKernel density estimation on a linear network. \bjournalScand. J. Stat. \bvolume44 \bpages324–345. \bdoi10.1111/sjos.12255 \bmrnumber3658517 \endbibitem
  44. {barticle}[author] \bauthor\bsnmMiller, \bfnmD. L.\binitsD. L. and \bauthor\bsnmWood, \bfnmS. N.\binitsS. N. (\byear2014). \btitleFinite area smoothing with generalized distance splines. \bjournalEnviron. Ecol. Stat. \bvolume21 \bpages715–731. \bdoi10.1007/s10651-014-0277-4 \bmrnumber3279587 \endbibitem
  45. {barticle}[author] \bauthor\bsnmMüller, \bfnmH. G.\binitsH. G. (\byear1991). \btitleSmooth optimum kernel estimators near endpoints. \bjournalBiometrika \bvolume78 \bpages521–530. \bdoi10.2307/2337021 \bmrnumber1130920 \endbibitem
  46. {barticle}[author] \bauthor\bsnmPetrone, \bfnmS.\binitsS. (\byear1999). \btitleBayesian density estimation using Bernstein polynomials. \bjournalCanad. J. Statist. \bvolume27 \bpages105–126. \bdoi10.2307/3315494 \bmrnumber1703623 \endbibitem
  47. {barticle}[author] \bauthor\bsnmPetrone, \bfnmS.\binitsS. and \bauthor\bsnmWasserman, \bfnmL.\binitsL. (\byear2002). \btitleConsistency of Bernstein polynomial posteriors. \bjournalJ. Roy. Statist. Soc. Ser. B \bvolume64 \bpages79–100. \bdoi10.1111/1467-9868.00326 \bmrnumber1881846 \endbibitem
  48. {barticle}[author] \bauthor\bsnmRamsay, \bfnmT.\binitsT. (\byear2002). \btitleSpline smoothing over difficult regions. \bjournalJ. R. Stat. Soc. Ser. B Stat. Methodol. \bvolume64 \bpages307–319. \bdoi10.1111/1467-9868.00339 \bmrnumber1904707 \endbibitem
  49. {barticle}[author] \bauthor\bsnmRebelles, \bfnmG.\binitsG. (\byear2015). \btitlePointwise adaptive estimation of a multivariate density under independence hypothesis. \bjournalBernoulli \bvolume21 \bpages1984–2023. \bdoi10.3150/14-BEJ633 \bmrnumber3378457 \endbibitem
  50. {bmisc}[author] \bauthor\bsnmRobinson, \bfnmD.\binitsD. (\byear2015). \btitleView package downloads over time with Shiny. \bnoteBlog post, available online at \hrefhttp://varianceexplained.org/r/cran-viewhttp://varianceexplained.org/r/cran-view [This link was accessed on 2024–05–15.]. \endbibitem
  51. {barticle}[author] \bauthor\bsnmRuppert, \bfnmD.\binitsD. and \bauthor\bsnmCline, \bfnmD. B. H.\binitsD. B. H. (\byear1994). \btitleBias reduction in kernel density estimation by smoothed empirical transformations. \bjournalAnn. Statist. \bvolume22 \bpages185–210. \bdoi10.1214/aos/1176325365 \bmrnumber1272080 \endbibitem
  52. {barticle}[author] \bauthor\bsnmSangalli, \bfnmL. M.\binitsL. M. (\byear2021). \btitleSpatial regression with partial differential equation regularisation. \bjournalInt. Stat. Rev. \bvolume89 \bpages505–531. \bdoi10.1111/insr.12444 \bmrnumber4411916 \endbibitem
  53. {barticle}[author] \bauthor\bsnmSangalli, \bfnmL. M.\binitsL. M., \bauthor\bsnmRamsay, \bfnmJ. O.\binitsJ. O. and \bauthor\bsnmRamsay, \bfnmT. O.\binitsT. O. (\byear2013). \btitleSpatial spline regression models. \bjournalJ. R. Stat. Soc. Ser. B. Stat. Methodol. \bvolume75 \bpages681–703. \bdoi10.1111/rssb.12009 \bmrnumber3091654 \endbibitem
  54. {barticle}[author] \bauthor\bsnmSchuster, \bfnmE. F.\binitsE. F. (\byear1985). \btitleIncorporating support constraints into nonparametric estimators of densities. \bjournalCommun. Statist. Theor. Meth. \bvolume14 \bpages1123–1136. \bdoi10.1080/03610928508828965 \bmrnumber797636 \endbibitem
  55. {barticle}[author] \bauthor\bsnmTsybakov, \bfnmA. B.\binitsA. B. (\byear1998). \btitlePointwise and sup-norm sharp adaptive estimation of functions on the Sobolev classes. \bjournalAnn. Statist. \bvolume26 \bpages2420–2469. \bdoi10.1214/aos/1024691478 \bmrnumber1700239 \endbibitem
  56. {bbook}[author] \bauthor\bsnmTsybakov, \bfnmA. B.\binitsA. B. (\byear2004). \btitleIntroduction à l’estimation non-paramétrique [french]. \bseriesMathématiques & Applications (Berlin) [Mathematics & Applications] \bvolume41. \bpublisherSpringer-Verlag, Berlin. \bmrnumber2013911 \endbibitem
  57. {bbook}[author] \bauthor\bsnmTsybakov, \bfnmA. B.\binitsA. B. (\byear2009). \btitleIntroduction to Nonparametric Estimation. \bseriesSpringer Series in Statistics. \bpublisherSpringer, New York. \bdoi10.1007/b13794 \bmrnumber2724359 \endbibitem
  58. {barticle}[author] \bauthor\bsnmWang, \bfnmH.\binitsH. and \bauthor\bsnmRanalli, \bfnmM. G.\binitsM. G. (\byear2007). \btitleLow-rank smoothing splines on complicated domains. \bjournalBiometrics \bvolume63 \bpages209–217. \bdoi10.1111/j.1541-0420.2006.00674.x \bmrnumber2345591 \endbibitem
  59. {barticle}[author] \bauthor\bsnmWood, \bfnmS. N.\binitsS. N., \bauthor\bsnmBravington, \bfnmM. V.\binitsM. V. and \bauthor\bsnmHedley, \bfnmS. L.\binitsS. L. (\byear2008). \btitleSoap film smoothing. \bjournalJ. R. Stat. Soc. Ser. B Stat. Methodol. \bvolume70 \bpages931–955. \bdoi10.1111/j.1467-9868.2008.00665.x \bmrnumber2530324 \endbibitem
  60. {barticle}[author] \bauthor\bsnmXu, \bfnmM.\binitsM. and \bauthor\bsnmSamworth, \bfnmR. J.\binitsR. J. (\byear2021). \btitleHigh-dimensional nonparametric density estimation via symmetry and shape constraints. \bjournalAnn. Statist. \bvolume49 \bpages650–672. \bdoi10.1214/20-aos1972 \bmrnumber4255102 \endbibitem
  61. {barticle}[author] \bauthor\bsnmZhang, \bfnmS.\binitsS. and \bauthor\bsnmKarunamuni, \bfnmR. J.\binitsR. J. (\byear1998). \btitleOn kernel density estimation near endpoints. \bjournalJ. Statist. Plann. Inference \bvolume70 \bpages301–316. \bdoi10.1016/S0378-3758(97)00187-0 \bmrnumber1649872 \endbibitem
  62. {barticle}[author] \bauthor\bsnmZhang, \bfnmS.\binitsS., \bauthor\bsnmKarunamuni, \bfnmR. J.\binitsR. J. and \bauthor\bsnmJones, \bfnmM. C.\binitsM. C. (\byear1999). \btitleAn improved estimator of the density function at the boundary. \bjournalJ. Amer. Statist. Assoc. \bvolume94 \bpages1231–1241. \bdoi10.2307/2669937 \bmrnumber1731485 \endbibitem
  63. {barticle}[author] \bauthor\bsnmZhang, \bfnmS.\binitsS. and \bauthor\bsnmKarunamuni, \bfnmR. J.\binitsR. J. (\byear2000). \btitleOn nonparametric density estimation at the boundary. \bjournalJ. Nonparametr. Statist. \bvolume12 \bpages197–221. \bdoi10.1080/10485250008832805 \bmrnumber1752313 \endbibitem
  64. {barticle}[author] \bauthor\bsnmZhou, \bfnmL.\binitsL. and \bauthor\bsnmPan, \bfnmH.\binitsH. (\byear2014). \btitleSmoothing noisy data for irregular regions using penalized bivariate splines on triangulations. \bjournalComput. Statist. \bvolume29 \bpages263–281. \bdoi10.1007/s00180-013-0448-z \bmrnumber3260122 \endbibitem

Summary

We haven't generated a summary for this paper yet.