Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hamiltonian formulation of gravity as a spontaneously-broken gauge theory of the Lorentz group (2308.01108v2)

Published 2 Aug 2023 in gr-qc

Abstract: A number of approaches to gravitation have much in common with the gauge theories of the standard model of particle physics. In this paper, we develop the Hamiltonian formulation of a class of gravitational theories that may be regarded as spontaneously-broken gauge theories of the complexified Lorentz group $SO(1,3)_C$ with the gravitational field described entirely by a gauge field valued in the Lie algebra of $SO(1,3)_C$ and a `Higgs field' valued in the group's fundamental representation. The theories have one free parameter $\beta$ which appears in a similar role to the inverse of the Barbero-Immirzi parameter of Einstein-Cartan theory. However, contrary to that parameter, it is shown that the number of degrees of freedom crucially depends on the value of $\beta$. For non-zero values of $\beta$, it is shown that three complex degrees of freedom propagate on general backgrounds, and for the specific values $\beta=\pm i$ an extension to General Relativity is recovered in a symmetry-broken regime. For the value $\beta=0$, the theory propagates no local degrees of freedom. A non-zero value of $\beta$ corresponds to the self-dual and anti-self-dual gauge fields appearing asymmetrically in the action, therefore in these models, the existence of gravitational degrees of freedom is tied to chiral asymmetry in the gravitational sector.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. G. Grignani and G. Nardelli. Gravity and the Poincare group. Phys. Rev. D, 45:2719–2731, 1992.
  2. Teleparallel Gravity: An Introduction. Springer, 2013.
  3. Spacetime and dark matter from spontaneous breaking of Lorentz symmetry. Class. Quant. Grav., 35(23):235003, 2018, 1807.01100.
  4. The ΛΛ\Lambdaroman_Λ and the CDM as Integration Constants. Symmetry, 13(11):2076, 2021, 2103.05435.
  5. Paths to gravitation via the gauging of parametrized field theories. Phys. Rev. D, 107(12):124013, 2023, 2212.04562.
  6. Tomi Koivisto. Cosmology in the Lorentz gauge theory. 6 2023, 2306.00963.
  7. Soren Holst. Barbero’s Hamiltonian derived from a generalized Hilbert-Palatini action. Phys. Rev. D, 53:5966–5969, 1996, gr-qc/9511026.
  8. General Poincaré gauge theory: Hamiltonian structure and particle spectrum. Phys. Rev. D, 98:024014, 2018, 1804.05556.
  9. Bi-gravity with a single graviton. JHEP, 08:070, 2019, 1904.11906.
  10. Review of the Hamiltonian analysis in teleparallel gravity. Int. J. Geom. Meth. Mod. Phys., 18(supp01):2130005, 2021, 2012.09180.
  11. Nonlinear Hamiltonian analysis of new quadratic torsion theories: Cases with curvature-free constraints. Phys. Rev. D, 104(8):084036, 2021, 2101.02645.
  12. Canonical structure of minimal varying ΛΛ\Lambdaroman_Λ theories. Class. Quant. Grav., 38(17):175011, 2021, 2104.03753.
  13. Sandipan Sengupta. Hamiltonian form of Carroll gravity. Phys. Rev. D, 107(2):024010, 2023, 2208.02983.
  14. Gauge symmetry of unimodular gravity in Hamiltonian formalism. Phys. Rev. D, 105(12):124006, 2022, 2203.06620.
  15. Joseph D. Romano. Geometrodynamics versus connection dynamics (in the context of (2+1) and (3+1) gravity. Gen. Rel. Grav., 25:759–854, 1993, gr-qc/9303032.
  16. A. Ashtekar. New Variables for Classical and Quantum Gravity. Phys. Rev. Lett., 57:2244–2247, 1986.
  17. Peter Peldan. Actions for gravity, with generalizations: A Review. Class. Quant. Grav., 11:1087–1132, 1994, gr-qc/9305011.
  18. Tetrads and q-theory. JETP Lett., 109(6):364–367, 2019, 1812.07046.
  19. Physical effects of the Immirzi parameter. Phys. Rev. D, 73:044013, 2006, gr-qc/0505081.
  20. Quantum gravity, torsion, parity violation and all that. Phys. Rev. D, 72:104002, 2005, hep-th/0507253.
  21. LQG vertex with finite Immirzi parameter. Nucl. Phys. B, 799:136–149, 2008, 0711.0146.
  22. Covariant phase space with boundaries. JHEP, 10:146, 2020, 1906.08616.
  23. Time and a physical Hamiltonian for quantum gravity. Phys. Rev. Lett., 108:141301, 2012, 1108.1145.
  24. A. Ashtekar. Lectures on nonperturbative canonical gravity, volume 6. 1991.
  25. C. J. Isham. Canonical quantum gravity and the problem of time. NATO Sci. Ser. C, 409:157–287, 1993, gr-qc/9210011.
  26. Gaussian reference fluid and interpretation of quantum geometrodynamics. Phys. Rev. D, 43:419–441, 1991.
  27. Dust as a standard of space and time in canonical quantum gravity. Phys. Rev. D, 51:5600–5629, 1995, gr-qc/9409001.
  28. Caustic free completion of pressureless perfect fluid and k-essence. JHEP, 08:040, 2017, 1704.03367.
  29. Singularity resolution depends on the clock. Class. Quant. Grav., 37(20):205018, 2020, 2005.05357.
  30. Dust reference frame in quantum cosmology. Class. Quant. Grav., 28:225014, 2011, 1108.1147.
  31. Quantum gravity corrections to the matter dynamics in the presence of a reference fluid. Phys. Rev. D, 105(8):086014, 2022, 2112.13216.
  32. WKB Approaches to Restore Time in Quantum Cosmology: Predictions and Shortcomings. Universe, 8(11):556, 2022, 2209.04403.
  33. N. Aghanim et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys., 641:A6, 2020, 1807.06209. [Erratum: Astron.Astrophys. 652, C4 (2021)].
  34. Joao Magueijo and Dionigi M. T. Benincasa. Chiral vacuum fluctuations in quantum gravity. Phys. Rev. Lett., 106:121302, 2011, 1010.3552.
  35. Inflationary tensor fluctuations, as viewed by Ashtekar variables and their imaginary friends. Phys. Rev. D, 84:024014, 2011, 1104.1800.
  36. Anomalous CMB polarization and gravitational chirality. Phys. Rev. Lett., 101:141101, 2008, 0806.3082.
  37. Edward Wilson-Ewing. Loop quantum cosmology with self-dual variables. Phys. Rev. D, 92(12):123536, 2015, 1503.07855.
  38. Edward Wilson-Ewing. Anisotropic loop quantum cosmology with self-dual variables. Phys. Rev. D, 93(8):083502, 2016, 1512.03684.
  39. Loop Quantum Cosmology with Complex Ashtekar Variables. Class. Quant. Grav., 32:025011, 2015, 1407.3768.
  40. Quantum fields at any time. Phys. Rev. D, 58:064007, 1998, hep-th/9707221.
  41. Madhavan Varadarajan. Dirac quantization of parametrized field theory. Phys. Rev. D, 75:044018, 2007, gr-qc/0607068.
  42. Work in preparation.
  43. S. W. MacDowell and F. Mansouri. Unified Geometric Theory of Gravity and Supergravity. Phys. Rev. Lett., 38:739, 1977. [Erratum: Phys.Rev.Lett. 38, 1376 (1977)].
  44. Spontaneously Broken De Sitter Symmetry and the Gravitational Holonomy Group. Phys. Rev. D, 21:1466, 1980.
  45. Derek K. Wise. MacDowell-Mansouri gravity and Cartan geometry. Class. Quant. Grav., 27:155010, 2010, gr-qc/0611154.
  46. An introduction to the physics of Cartan gravity. Annals Phys., 361:330–376, 2015, 1411.1679.
  47. Spontaneously broken Lorentz symmetry for Hamiltonian gravity. Phys. Rev. D, 85:104013, 2012, 1111.7195.
Citations (4)

Summary

We haven't generated a summary for this paper yet.