Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Informed Bayesian Finite Mixture Models via Asymmetric Dirichlet Priors (2308.00768v1)

Published 1 Aug 2023 in stat.ME

Abstract: Finite mixture models are flexible methods that are commonly used for model-based clustering. A recent focus in the model-based clustering literature is to highlight the difference between the number of components in a mixture model and the number of clusters. The number of clusters is more relevant from a practical stand point, but to date, the focus of prior distribution formulation has been on the number of components. In light of this, we develop a finite mixture methodology that permits eliciting prior information directly on the number of clusters in an intuitive way. This is done by employing an asymmetric Dirichlet distribution as a prior on the weights of a finite mixture. Further, a penalized complexity motivated prior is employed for the Dirichlet shape parameter. We illustrate the ease to which prior information can be elicited via our construction and the flexibility of the resulting induced prior on the number of clusters. We also demonstrate the utility of our approach using numerical experiments and two real world data sets.

Summary

We haven't generated a summary for this paper yet.