Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CFT and Lattice Correlators Near an RG Domain Wall between Minimal Models (2308.00737v2)

Published 1 Aug 2023 in hep-th, cond-mat.stat-mech, cond-mat.str-el, and cond-mat.supr-con

Abstract: Conformal interfaces separating two conformal field theories (CFTs) provide maps between different CFTs, and naturally exist in nature as domain walls between different phases. One particularly interesting construction of a conformal interface is the renormalization group (RG) domain wall between CFTs. For a given Virasoro minimal model $\mathcal{M}{k+3,k+2}$, an RG domain wall can be generated by a specific deformation which triggers an RG flow towards its adjacent Virasoro minimal model $\mathcal{M}{k+2,k+1}$ with the deformation turned on over part of the space. An algebraic construction of this domain wall was proposed by Gaiotto in \cite{Gaiotto:2012np}. In this paper, we will provide a study of this RG domain wall for the minimal case $k=2$, which can be thought of as a nonperturbative check of the construction. In this case the wall is separating the Tricritical Ising Model (TIM) CFT and the Ising Model (IM) CFT. We will check the analytical results of correlation functions from the RG brane construction with the numerical density matrix renormalization group (DMRG) calculation using a lattice model proposed in \cite{Grover:2012bm,Grover:2013rc}, and find a perfect agreement. We comment on possible experimental realizations of this RG domain wall.

Citations (6)

Summary

We haven't generated a summary for this paper yet.