Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analog quantum simulation of partial differential equations (2308.00646v3)

Published 1 Aug 2023 in quant-ph

Abstract: Quantum simulators were originally proposed for simulating one partial differential equation (PDE) in particular - Schrodinger's equation. Can quantum simulators also efficiently simulate other PDEs? While most computational methods for PDEs - both classical and quantum - are digital (PDEs must be discretised first), PDEs have continuous degrees of freedom. This suggests that an analog representation can be more natural. While digital quantum degrees of freedom are usually described by qubits, the analog or continuous quantum degrees of freedom can be captured by qumodes. Based on a method called Schrodingerisation, we show how to directly map D-dimensional linear PDEs onto a (D+1)-qumode quantum system where analog or continuous-variable Hamiltonian simulation on D+1 qumodes can be used. This very simple methodology does not require one to discretise PDEs first, and it is not only applicable to linear PDEs but also to some nonlinear PDEs and systems of nonlinear ODEs. We show some examples using this method, including the Liouville equation, heat equation, Fokker-Planck equation, Black-Scholes equations, wave equation and Maxwell's equations. We also devise new protocols for linear PDEs with random coefficients, important in uncertainty quantification, where it is clear how the analog or continuous-variable framework is most natural. This also raises the possibility that some PDEs may be simulated directly on analog quantum systems by using Hamiltonians natural for those quantum systems.

Citations (3)

Summary

We haven't generated a summary for this paper yet.