Regularity for the Timoshenko system with fractional damping (2308.00573v2)
Abstract: We study, the Regularity of the Timoshenko system with two fractional dampings $(-\Delta)\tau u_t$ and $(-\Delta)\sigma \psi_t$; both of the parameters $(\tau, \sigma)$ vary in the interval $[0,1]$. We note that ($\tau=0$ or $\sigma=0$) and ($\tau=1$ or $\sigma=1$) the dampings are called frictional and viscous, respectively. Our main contribution is to show that the corresponding semigroup $S(t)=e{\mathcal{B}t}$, is analytic for $(\tau,\sigma)\in R_A:=[1/2,1]\times[ 1/2,1]$ and determine the Gevrey's class $\nu>\dfrac{1}{\phi}$, where $\phi=\left{\begin{array}{ccc} \dfrac{2\sigma}{\sigma+1} &{\rm for} & \sigma\leq \tau,\\ \dfrac{2\tau}{\tau+1} &{\rm for} & \tau\leq \sigma. \end{array}\right.$ \quad and \quad $(\tau,\sigma)\in R_{CG}:= (0,1)2$.