Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiscale Feature Learning Using Co-Tuplet Loss for Offline Handwritten Signature Verification (2308.00428v4)

Published 1 Aug 2023 in cs.CV

Abstract: Handwritten signature verification, crucial for legal and financial institutions, faces challenges including inter-writer similarity, intra-writer variations, and limited signature samples. To address these, we introduce the MultiScale Signature feature learning Network (MS-SigNet) with the co-tuplet loss, a novel metric learning loss designed for offline handwritten signature verification. MS-SigNet learns both global and regional signature features from multiple spatial scales, enhancing feature discrimination. This approach effectively distinguishes genuine signatures from skilled forgeries by capturing overall strokes and detailed local differences. The co-tuplet loss, focusing on multiple positive and negative examples, overcomes the limitations of typical metric learning losses by addressing inter-writer similarity and intra-writer variations and emphasizing informative examples. We also present HanSig, a large-scale Chinese signature dataset to support robust system development for this language. The dataset is accessible at \url{https://github.com/hsinmin/HanSig}. Experimental results on four benchmark datasets in different languages demonstrate the promising performance of our method in comparison to state-of-the-art approaches.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. A. K. Jain, A. Ross, and S. Prabhakar, “An introduction to biometric recognition,” IEEE Trans. Circuits Syst. Video Technol., vol. 14, no. 1, pp. 4–20, 2004.
  2. L. Liu, L. Huang, F. Yin, and Y. Chen, “Offline signature verification using a region based deep metric learning network,” Pattern Recognit., vol. 118, p. 108009, 2021.
  3. J. Vargas, M. Ferrer, C. Travieso, and J. B. Alonso, “Off-line signature verification based on grey level information using texture features,” Pattern Recognit., vol. 44, no. 2, pp. 375–385, 2011.
  4. G. Pirlo and D. Impedovo, “Verification of static signatures by optical flow analysis,” IEEE Trans. Hum.-Mach. Syst., vol. 43, no. 5, pp. 499–505, 2013.
  5. ——, “Cosine similarity for analysis and verification of static signatures,” IET Biom., vol. 2, no. 4, pp. 151–158, 2013.
  6. M. I. Malik, M. Liwicki, A. Dengel, S. Uchida, and V. Frinken, “Automatic signature stability analysis and verification using local features,” in Proc. 14th Int. Conf. Front. Handwrit. Recognit., Hersonissos, Greece, 2014, pp. 621–626.
  7. M. Sharif, M. A. Khan, M. Faisal, M. Yasmin, and S. L. Fernandes, “A framework for offline signature verification system: Best features selection approach,” Pattern Recognit. Lett., vol. 139, pp. 50–59, 2020.
  8. H. Rantzsch, H. Yang, and C. Meinel, “Signature embedding: Writer independent offline signature verification with deep metric learning,” in Proc. 12th Int. Symp. Vis. Comput., vol. 10073, Las Vegas, NV, USA, 2016, pp. 616–625.
  9. S. Dey, A. Dutta, J. I. Toledo, S. K. Ghosh, J. Lladós, and U. Pal, “Signet: Convolutional siamese network for writer independent offline signature verification,” 2017, arXiv:1707.02131.
  10. Z.-J. Xing, F. Yin, Y.-C. Wu, and C.-L. Liu, “Offline signature verification using convolution Siamese network,” in Proc. Int. Conf. Graph. Image Process., vol. 10615, Qingdao, China, 2018, p. 106151I.
  11. P. Maergner, V. Pondenkandath, M. Alberti, M. Liwicki, K. Riesen, R. Ingold, and A. Fischer, “Combining graph edit distance and triplet networks for offline signature verification,” Pattern Recognit. Lett., vol. 125, pp. 527–533, 2019.
  12. Q. Wan and Q. Zou, “Learning metric features for writer-independent signature verification using dual triplet loss,” in Proc. 25th Int. Conf. Pattern Recognit., Milan, Italy, 2021, pp. 3853–3859.
  13. R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learning an invariant mapping,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), vol. 2, New York, NY, USA, 2006, pp. 1735–1742.
  14. M. Schultz and T. Joachims, “Learning a distance metric from relative comparisons,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), vol. 16, Whistler, BC, Canada, 2003, pp. 41–48.
  15. K. Q. Weinberger and L. K. Saul, “Distance metric learning for large margin nearest neighbor classification,” J. Mach. Learn. Res., vol. 10, no. 2, pp. 207–244, 2009.
  16. K. Sohn, “Improved deep metric learning with multi-class n-pair loss objective,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), vol. 29, Barcelona, Spain, 2016, pp. 1857–1865.
  17. X. Wang, X. Han, W. Huang, D. Dong, and M. R. Scott, “Multi-similarity loss with general pair weighting for deep metric learning,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Long Beach, CA, USA, 2019, pp. 5017–5025.
  18. M. K. Kalera, S. Srihari, and A. Xu, “Offline signature verification and identification using distance statistics,” Int. J. Pattern Recognit. Artif. Intell., vol. 18, no. 07, pp. 1339–1360, 2004.
  19. S. Pal, A. Alaei, U. Pal, and M. Blumenstein, “Performance of an off-line signature verification method based on texture features on a large Indic-script signature dataset,” in Proc.12th IAPR Int. Work. Doc. Anal. Syst., Santorini, Greece, 2016, pp. 72–77.
  20. M. Diaz, M. A. Ferrer, D. Impedovo, M. I. Malik, G. Pirlo, and R. Plamondon, “A perspective analysis of handwritten signature technology,” ACM Comput. Surv., vol. 51, no. 6, pp. 1–39, 2019.
  21. M. M. Hameed, R. Ahmad, M. L. M. Kiah, and G. Murtaza, “Machine learning-based offline signature verification systems: A systematic review,” Signal Process. Image Commun., vol. 93, p. 116139, 2021.
  22. L. G. Hafemann, R. Sabourin, and L. S. Oliveira, “Learning features for offline handwritten signature verification using deep convolutional neural networks,” Pattern Recognit., vol. 70, pp. 163–176, 2017.
  23. L. G. Hafemann, L. S. Oliveira, and R. Sabourin, “Fixed-sized representation learning from offline handwritten signatures of different sizes,” Int. J. Doc. Anal. Recognit., vol. 21, no. 3, pp. 219–232, 2018.
  24. S. Bonde, P. Narwade, and R. Sawant, “Offline signature verification using convolutional neural network,” in Proc. IEEE Int. Conf. Signal Process. Comput., Noida, India, 2020, pp. 119–127.
  25. P. Wei, H. Li, and P. Hu, “Inverse discriminative networks for handwritten signature verification,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Long Beach, CA, USA, 2019, pp. 5764–5772.
  26. A. Soleimani, B. N. Araabi, and K. Fouladi, “Deep multitask metric learning for offline signature verification,” Pattern Recognit. Lett., vol. 80, pp. 84–90, 2016.
  27. Y. Zhao, C. Shen, X. Yu, H. Chen, Y. Gao, and S. Xiong, “Learning deep part-aware embedding for person retrieval,” Pattern Recognit., vol. 116, p. 107938, 2021.
  28. F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified embedding for face recognition and clustering,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), vol. 1, Boston, MA, USA, 2015, pp. 815–823.
  29. J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature verification using a ”Siamese” time delay neural network,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), vol. 6, Denver, CO, USA, 1993, p. 737–744.
  30. Y. Zhu, S. Lai, Z. Li, and L. Jin, “Point-to-set similarity based deep metric learning for offline signature verification,” in Proc. 17th Int. Conf. Front. Handwrit. Recognit., Dortmund, Germany, 2020, pp. 282–287.
  31. B. Yu and D. Tao, “Deep metric learning with tuplet margin loss,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Seoul, Korea, 2019, pp. 6490–6499.
  32. M. A. Ferrer, M. Diaz-Cabrera, and A. Morales, “Static signature synthesis: A neuromotor inspired approach for biometrics,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 3, pp. 667–680, 2015.
  33. J. Ortega-Garcia, J. Fierrez-Aguilar, D. Simon, J. Gonzalez, M. Faundez-Zanuy, V. Espinosa, A. Satue, I. Hernaez, J.-J. Igarza, and C. Vivaracho, “MCYT baseline corpus: A bimodal biometric database,” IEE Proc.-Vis. Image Signal Process., vol. 150, no. 6, pp. 395–401, 2003.
  34. A. Soleimani, K. Fouladi, and B. N. Araabi, “UTSig: A Persian offline signature dataset,” IET Biom., vol. 6, no. 1, pp. 1–8, 2016.
  35. M. Liwicki, M. I. Malik, C. E. Van Den Heuvel, X. Chen, C. Berger, R. Stoel, M. Blumenstein, and B. Found, “Signature verification competition for online and offline skilled forgeries (SigComp2011),” in Proc. Int. Conf. Doc. Anal. Recognit. (ICDAR), Beijing, China, 2011, pp. 1480–1484.
  36. K. Yan, Y. Zhang, H. Tang, C. Ren, J. Zhang, G. Wang, and H. Wang, “Signature detection, restoration, and verification: A novel Chinese document signature forgery detection benchmark,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), New Orleans, LA, USA, 2022, pp. 5163–5172.
  37. J. Wei, Q. Wang, Z. Li, S. Wang, S. K. Zhou, and S. Cui, “Shallow feature matters for weakly supervised object localization,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Nashville, TN, USA, 2021, pp. 5989–5997.
  38. X. Qin, Z. Wang, Y. Bai, X. Xie, and H. Jia, “FFA-Net: Feature fusion attention network for single image dehazing,” in Proc. 34th AAAI Conf. Artif. Intell., vol. 34, New York, NY, USA, 2020, pp. 11 908–11 915.
  39. Y. Zheng, B. K. Iwana, M. I. Malik, S. Ahmed, W. Ohyama, and S. Uchida, “Learning the micro deformations by max-pooling for offline signature verification,” Pattern Recognit., vol. 118, p. 108008, 2021.
  40. S. Chattopadhyay, S. Manna, S. Bhattacharya, and U. Pal, “SURDS: Self-supervised attention-guided reconstruction and dual triplet loss for writer independent offline signature verification,” in Proc. 26th Int. Conf. Pattern Recognit., Montreal, QC, Canada, 2022, pp. 1600–1606.
  41. R. Kumar, L. Kundu, B. Chanda, and J. Sharma, “A writer-independent off-line signature verification system based on signature morphology,” in Proc. Int. Conf. Intell. Interact. Technol. Multimed. (IITM), New York, NY, USA, 2010, pp. 261–265.
  42. R. Kumar, J. Sharma, and B. Chanda, “Writer-independent off-line signature verification using surroundedness feature,” Pattern Recognit. Lett., vol. 33, no. 3, pp. 301–308, 2012.
  43. C. Li, F. Lin, Z. Wang, G. Yu, L. Yuan, and H. Wang, “DeepHSV: User-independent offline signature verification using two-channel CNN,” in Proc. Int. Conf. Doc. Anal. Recognit. (ICDAR), Sydney, NSW, Australia, 2019, pp. 166–171.
  44. N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. Syst., vol. 9, no. 1, pp. 62–66, 1979.
  45. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in Proc. Int. Conf. Learn. Represent. (ICLR), San Diego, CA, USA, 2015. [Online]. Available: https://doi.org/10.48550/arXiv.1409.1556
  46. L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach. Learn. Res., vol. 9, pp. 2579–2605, 2008. [Online]. Available: http://jmlr.org/papers/v9/vandermaaten08a.html
  47. R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-CAM: Visual explanations from deep networks via gradient-based localization,” Int. J. Comput. Vis., vol. 128, no. 2, pp. 336–359, 2020.
  48. J. Gildenblat. (2021) Pytorch library for CAM methods. [Online]. Available: https://github.com/jacobgil/pytorch-grad-cam
  49. Y. Guerbai, Y. Chibani, and B. Hadjadji, “The effective use of the one-class SVM classifier for handwritten signature verification based on writer-independent parameters,” Pattern Recognit., vol. 48, no. 1, pp. 103–113, 2015.
  50. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Las Vegas, NV, USA, 2016, pp. 770–778.
  51. M. Diaz, M. A. Ferrer, and R. Sabourin, “Approaching the intra-class variability in multi-script static signature evaluation,” in Proc. 23rd Int. Conf. Pattern Recognit., Cancun, Mexico, 2016, pp. 1147–1152.

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com