Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Target Search and Navigation in Heterogeneous Robot Systems with Deep Reinforcement Learning (2308.00331v1)

Published 1 Aug 2023 in cs.RO and cs.AI

Abstract: Collaborative heterogeneous robot systems can greatly improve the efficiency of target search and navigation tasks. In this paper, we design a heterogeneous robot system consisting of a UAV and a UGV for search and rescue missions in unknown environments. The system is able to search for targets and navigate to them in a maze-like mine environment with the policies learned through deep reinforcement learning algorithms. During the training process, if two robots are trained simultaneously, the rewards related to their collaboration may not be properly obtained. Hence, we introduce a multi-stage reinforcement learning framework and a curiosity module to encourage agents to explore unvisited environments. Experiments in simulation environments show that our framework can train the heterogeneous robot system to achieve the search and navigation with unknown target locations while existing baselines may not, and accelerate the training speed.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yun Chen (134 papers)
  2. Jiaping Xiao (12 papers)

Summary

We haven't generated a summary for this paper yet.