Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geometric ergodicity of trans-dimensional Markov chain Monte Carlo algorithms (2308.00139v3)

Published 31 Jul 2023 in math.ST and stat.TH

Abstract: This article studies the convergence properties of trans-dimensional MCMC algorithms when the total number of models is finite. It is shown that, for reversible and some non-reversible trans-dimensional Markov chains, under mild conditions, geometric convergence is guaranteed if the Markov chains associated with the within-model moves are geometrically ergodic. This result is proved in an $L2$ framework using the technique of Markov chain decomposition. While the technique was previously developed for reversible chains, this work extends it to the point that it can be applied to some commonly used non-reversible chains. The theory herein is applied to reversible jump algorithms for three Bayesian models: a probit regression with variable selection, a Gaussian mixture model with unknown number of components, and an autoregression with Laplace errors and unknown model order.

Citations (2)

Summary

We haven't generated a summary for this paper yet.