Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DiviML: A Module-based Heuristic for Mapping Neural Networks onto Heterogeneous Platforms (2308.00127v2)

Published 31 Jul 2023 in cs.LG, cs.DC, and cs.SE

Abstract: Datacenters are increasingly becoming heterogeneous, and are starting to include specialized hardware for networking, video processing, and especially deep learning. To leverage the heterogeneous compute capability of modern datacenters, we develop an approach for compiler-level partitioning of deep neural networks (DNNs) onto multiple interconnected hardware devices. We present a general framework for heterogeneous DNN compilation, offering automatic partitioning and device mapping. Our scheduler integrates both an exact solver, through a mixed integer linear programming (MILP) formulation, and a modularity-based heuristic for scalability. Furthermore, we propose a theoretical lower bound formula for the optimal solution, which enables the assessment of the heuristic solutions' quality. We evaluate our scheduler in optimizing both conventional DNNs and randomly-wired neural networks, subject to latency and throughput constraints, on a heterogeneous system comprised of a CPU and two distinct GPUs. Compared to na\"ively running DNNs on the fastest GPU, he proposed framework can achieve more than 3$\times$ times lower latency and up to 2.9$\times$ higher throughput by automatically leveraging both data and model parallelism to deploy DNNs on our sample heterogeneous server node. Moreover, our modularity-based "splitting" heuristic improves the solution runtime up to 395$\times$ without noticeably sacrificing solution quality compared to an exact MILP solution, and outperforms all other heuristics by 30-60% solution quality. Finally, our case study shows how we can extend our framework to schedule LLMs across multiple heterogeneous servers by exploiting symmetry in the hardware setup. Our code can be easily plugged in to existing frameworks, and is available at https://github.com/abdelfattah-lab/diviml.

Citations (2)

Summary

We haven't generated a summary for this paper yet.