Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DPBERT: Efficient Inference for BERT based on Dynamic Planning (2308.00108v1)

Published 26 Jul 2023 in cs.CL and cs.AI

Abstract: Large-scale pre-trained LLMs such as BERT have contributed significantly to the development of NLP. However, those models require large computational resources, making it difficult to be applied to mobile devices where computing power is limited. In this paper we aim to address the weakness of existing input-adaptive inference methods which fail to take full advantage of the structure of BERT. We propose Dynamic Planning in BERT, a novel fine-tuning strategy that can accelerate the inference process of BERT through selecting a subsequence of transformer layers list of backbone as a computational path for an input sample. To do this, our approach adds a planning module to the original BERT model to determine whether a layer is included or bypassed during inference. Experimental results on the GLUE benchmark exhibit that our method reduces latency to 75\% while maintaining 98\% accuracy, yielding a better accuracy-speed trade-off compared to state-of-the-art input-adaptive methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Weixin Wu (2 papers)
  2. Hankz Hankui Zhuo (35 papers)