Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unveiling the geometric meaning of quantum entanglement: discrete and continuous variable systems (2307.16835v2)

Published 31 Jul 2023 in quant-ph

Abstract: We show that the manifold of quantum states is endowed with a rich and nontrivial geometric structure. We derive the Fubini-Study metric of the projective Hilbert space of a multi-qubit quantum system, endowing it with a Riemannian metric structure, and investigate its deep link with the entanglement of the states of this space. As a measure, we adopt the Entanglement Distance E preliminary proposed in [1]. Our analysis shows that entanglement has a geometric interpretation: E(|psi>) is the minimum value of the sum of the squared distances between |psi> and its conjugate states, namely the states vmu. sigmamu |psi>, where vmu are unit vectors and mu runs on the number of parties. We derive a general method to determine when two states are not the same state up to the action of local unitary operators. We prove that the entanglement distance, along with its convex roof expansion to mixed states, fulfills the three conditions required for an entanglement measure: that is i) E(|psi>) =0 iff |psi> is fully separable; ii) E is invariant under local unitary transformations; iii) E doesn't increase under local operation and classical communications. Two different proofs are provided for this latter property. We also show that in the case of two qubits pure states, the entanglement distance for a state |psi> coincides with two times the square of the concurrence of this state. We propose a generalization of the entanglement distance to continuous variable systems. Finally, we apply the proposed geometric approach to the study of the entanglement magnitude and the equivalence classes properties, of three families of states linked to the Greenberger-Horne-Zeilinger states, the Briegel Raussendorf states and the W states. As an example of an application for the case of a system with continuous variables, we have considered a system of two coupled Glauber coherent states.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. O. Gühne and G. Toth, Physics Reports 474, 1 (2009).
  2. J. Sperling and I. A. Walmsley, Phys. Rev. A 95, 062116 (2017).
  3. S. Popescu and D. Rohrlich, Phys. Rev. A 56, R3319 (1997).
  4. W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
  5. H. J. Briegel and R. Raussendorf, Phys. Rev. Lett. 86, 910 (2001).
  6. J. Eisert and H. J. Briegel, Phys. Rev. A 64, 022306 (2001).
  7. K. Roszak, Phys. Rev. Res. 2, 043062 (2020).
  8. S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 72, 3439 (1994).
  9. L. Pezzé and A. Smerzi, Phys. Rev. Lett. 102, 100401 (2009).
  10. S. Scali and R. Franzosi, Annals of Physics 411, 167995 (2019).
  11. G. Gibbons, Journal of Geometry and Physics 8, 147 (1992).
  12. D. C. Brody and L. P. Hughston, Journal of Geometry and Physics 38, 19 (2001).
  13. G. Vidal, Journal of Modern Optics 47, 355–376 (2000).
  14. D. M. Greenberger, M. A. Horne,  and A. Zeilinger, “Going beyond bell’s theorem,” in Bell’s Theorem, Quantum Theory and Conceptions of the Universe, edited by M. Kafatos (Springer Netherlands, Dordrecht, 1989) pp. 69–72.
  15. J. P. Provost and G. Vallee, Communications in Mathematical Physics 76, 289 (1980).
  16. A. Vesperini, Annals of Physics , 169406 (2023).
  17. W. K. Wootters, Quantum Info. Comput. 1, 27–44 (2001).
  18. S. Wu and Y. Zhang, Phys. Rev. A 63, 012308 (2000).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com