Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Light, Reliable Spanners (2307.16612v1)

Published 31 Jul 2023 in cs.DS and cs.CG

Abstract: A \emph{$\nu$-reliable spanner} of a metric space $(X,d)$, is a (dominating) graph $H$, such that for any possible failure set $B\subseteq X$, there is a set $B+$ just slightly larger $|B+|\le(1+\nu)\cdot|B|$, and all distances between pairs in $X\setminus B+$ are (approximately) preserved in $H\setminus B$. Recently, there have been several works on sparse reliable spanners in various settings, but so far, the weight of such spanners has not been analyzed at all. In this work, we initiate the study of \emph{light} reliable spanners, whose weight is proportional to that of the Minimum Spanning Tree (MST) of $X$. We first observe that unlike sparsity, the lightness of any deterministic reliable spanner is huge, even for the metric of the simple path graph. Therefore, randomness must be used: an \emph{oblivious} reliable spanner is a distribution over spanners, and the bound on $|B+|$ holds in expectation. We devise an oblivious $\nu$-reliable $(2+\frac{2}{k-1})$-spanner for any $k$-HST, whose lightness is $\approx \nu{-2}$. We demonstrate a matching $\Omega(\nu{-2})$ lower bound on the lightness (for any finite stretch). We also note that any stretch below 2 must incur linear lightness. For general metrics, doubling metrics, and metrics arising from minor-free graphs, we construct {\em light} tree covers, in which every tree is a $k$-HST of low weight. Combining these covers with our results for $k$-HSTs, we obtain oblivious reliable light spanners for these metric spaces, with nearly optimal parameters. In particular, for doubling metrics we get an oblivious $\nu$-reliable $(1+\varepsilon)$-spanner with lightness $\varepsilon{-O({\rm ddim})}\cdot\tilde{O}(\nu{-2}\cdot\log n)$, which is best possible (up to lower order terms).

Citations (3)

Summary

We haven't generated a summary for this paper yet.