Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributionally Robust Safety Filter for Learning-Based Control in Active Distribution Systems (2307.16351v1)

Published 31 Jul 2023 in eess.SY, cs.AI, and cs.SY

Abstract: Operational constraint violations may occur when deep reinforcement learning (DRL) agents interact with real-world active distribution systems to learn their optimal policies during training. This letter presents a universal distributionally robust safety filter (DRSF) using which any DRL agent can reduce the constraint violations of distribution systems significantly during training while maintaining near-optimal solutions. The DRSF is formulated as a distributionally robust optimization problem with chance constraints of operational limits. This problem aims to compute near-optimal actions that are minimally modified from the optimal actions of DRL-based Volt/VAr control by leveraging the distribution system model, thereby providing constraint satisfaction guarantee with a probability level under the model uncertainty. The performance of the proposed DRSF is verified using the IEEE 33-bus and 123-bus systems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.