Quantum metrology enhanced by the $XY$ spin interaction in a generalized Tavis-Cummings model (2307.16166v3)
Abstract: Quantum metrology is recognized for its capability to offer high-precision estimation by utilizing quantum resources, such as quantum entanglement. Here, we propose a generalized Tavis-Cummings model by introducing the $XY$ spin interaction to explore the impact of the many-body effect on estimation precision, quantified by the quantum Fisher information (QFI). By deriving the effective description of our model, we establish a closed relationship between the QFI and the spin fluctuation induced by the $XY$ spin interaction. Based on this exact relation, we emphasize the indispensable role of the spin anisotropy in achieving the Heisenberg-scaling precision for estimating a weak magnetic field. Furthermore, we observe that the estimation precision can be enhanced by increasing the strength of the spin anisotropy. We also reveal a clear scaling transition of the QFI in the Tavis-Cummings model with the reduced Ising interaction. Our results contribute to the enrichment of metrology theory by considering many-body effects, and they also present an alternative approach to improving the estimation precision by harnessing the power provided by many-body quantum phases.
- L. Pezzé and A. Smerzi, Phys. Rev. Lett. 102, 100401 (2009).
- C. M. Caves, Phys. Rev. D 23, 1693 (1981).
- L. Pezzé and A. Smerzi, Phys. Rev. Lett. 110, 163604 (2013).
- N. Ramsey, Phys. Today 33, 25 (1980).
- D. Walls and P. Zoller, Phys. Lett. A 85, 118 (1981).
- B. P. Abbott et al., Rep. Prog. Phys. 72, 076901 (2009).
- D. Budker and M. Romalis, Nat. Phys. 3, 227 (2007).
- F. Troiani and M. G. A. Paris, Phys. Rev. Lett. 120, 260503 (2018).
- M. A. Taylor and W. P. Bowen, Phys. Rep. 615, 1 (2016).
- S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 72, 3439 (1994).
- A. Hamma and D. A. Lidar, Phys. Rev. Lett. 100, 030502 (2008).
- J. Larson and E. Andersson, Phys. Rev. A 71, 053814 (2005).
- S. Dutra, Cavity quantum electrodynamics (John Wiley and Sons Inc., 2005).
- K. Hepp and E. H. Lieb, Ann. Phys. 76, 360 (1973a).
- K. Hepp and E. H. Lieb, Phys. Rev. A 8, 2517 (1973b).
- I. Buluta and F. Nori, Science 326, 108 (2009).
- Y. Su and X. Wang, Results Phys. 24, 104159 (2021).
- M. S. Kim and G. S. Agarwal, Phys. Rev. A 59, 3044 (1999).
- S. Scheel, J. Mod. Opt. 56, 141 (2009).
- M. Tavis and F. W. Cummings, Phys. Rev. 170, 379 (1968).
- M. Tavis and F. W. Cummings, Phys. Rev. 188, 692 (1969).
- D. F. James and J. Jerke, Can. J. Phys. 85, 625 (2007).
- B. W. Shore and P. L. Knight, J. Mod. Opt. 40, 1195 (1993).
- C. W. Helstrom, J. Stat. Phys. 1, 231 (1969).
- A. S. Holevo, Probabilistic and statistical aspects of quantum theory, Vol. 1 (Springer Science & Business Media, 2011).
- W. K. Wootters, Phys. Rev. D 23, 357 (1981).