Papers
Topics
Authors
Recent
Search
2000 character limit reached

Quantum metrology enhanced by the $XY$ spin interaction in a generalized Tavis-Cummings model

Published 30 Jul 2023 in quant-ph | (2307.16166v3)

Abstract: Quantum metrology is recognized for its capability to offer high-precision estimation by utilizing quantum resources, such as quantum entanglement. Here, we propose a generalized Tavis-Cummings model by introducing the $XY$ spin interaction to explore the impact of the many-body effect on estimation precision, quantified by the quantum Fisher information (QFI). By deriving the effective description of our model, we establish a closed relationship between the QFI and the spin fluctuation induced by the $XY$ spin interaction. Based on this exact relation, we emphasize the indispensable role of the spin anisotropy in achieving the Heisenberg-scaling precision for estimating a weak magnetic field. Furthermore, we observe that the estimation precision can be enhanced by increasing the strength of the spin anisotropy. We also reveal a clear scaling transition of the QFI in the Tavis-Cummings model with the reduced Ising interaction. Our results contribute to the enrichment of metrology theory by considering many-body effects, and they also present an alternative approach to improving the estimation precision by harnessing the power provided by many-body quantum phases.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. L. Pezzé and A. Smerzi, Phys. Rev. Lett. 102, 100401 (2009).
  2. C. M. Caves, Phys. Rev. D 23, 1693 (1981).
  3. L. Pezzé and A. Smerzi, Phys. Rev. Lett. 110, 163604 (2013).
  4. N. Ramsey, Phys. Today 33, 25 (1980).
  5. D. Walls and P. Zoller, Phys. Lett. A 85, 118 (1981).
  6. B. P. Abbott et al., Rep. Prog. Phys. 72, 076901 (2009).
  7. D. Budker and M. Romalis, Nat. Phys. 3, 227 (2007).
  8. F. Troiani and M. G. A. Paris, Phys. Rev. Lett. 120, 260503 (2018).
  9. M. A. Taylor and W. P. Bowen, Phys. Rep. 615, 1 (2016).
  10. S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 72, 3439 (1994).
  11. A. Hamma and D. A. Lidar, Phys. Rev. Lett. 100, 030502 (2008).
  12. J. Larson and E. Andersson, Phys. Rev. A 71, 053814 (2005).
  13. S. Dutra, Cavity quantum electrodynamics (John Wiley and Sons Inc., 2005).
  14. K. Hepp and E. H. Lieb, Ann. Phys. 76, 360 (1973a).
  15. K. Hepp and E. H. Lieb, Phys. Rev. A 8, 2517 (1973b).
  16. I. Buluta and F. Nori, Science 326, 108 (2009).
  17. Y. Su and X. Wang, Results Phys. 24, 104159 (2021).
  18. M. S. Kim and G. S. Agarwal, Phys. Rev. A 59, 3044 (1999).
  19. S. Scheel, J. Mod. Opt. 56, 141 (2009).
  20. M. Tavis and F. W. Cummings, Phys. Rev. 170, 379 (1968).
  21. M. Tavis and F. W. Cummings, Phys. Rev. 188, 692 (1969).
  22. D. F. James and J. Jerke, Can. J. Phys. 85, 625 (2007).
  23. B. W. Shore and P. L. Knight, J. Mod. Opt. 40, 1195 (1993).
  24. C. W. Helstrom, J. Stat. Phys. 1, 231 (1969).
  25. A. S. Holevo, Probabilistic and statistical aspects of quantum theory, Vol. 1 (Springer Science & Business Media, 2011).
  26. W. K. Wootters, Phys. Rev. D 23, 357 (1981).
Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.