Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Binary classification based Monte Carlo simulation (2307.16035v2)

Published 29 Jul 2023 in stat.ME, stat.ML, and stat.OT

Abstract: Acceptance-rejection (AR), Independent Metropolis Hastings (IMH) or importance sampling (IS) Monte Carlo (MC) simulation algorithms all involve computing ratios of probability density functions (pdfs). On the other hand, classifiers discriminate labeled samples produced by a mixture of two distributions and can be used for approximating the ratio of the two corresponding pdfs.This bridge between simulation and classification enables us to propose pdf-free versions of pdf-ratio-based simulation algorithms, where the ratio is replaced by a surrogate function computed via a classifier. From a probabilistic modeling perspective, our procedure involves a structured energy based model which can easily be trained and is compatible with the classical samplers.

Summary

We haven't generated a summary for this paper yet.