Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Green's boundary relation model in a Krein space (2307.15954v2)

Published 29 Jul 2023 in math.FA

Abstract: Given Krein and Hilbert spaces $\left( \mathcal{K},[.,.] \right)$ and $\left( \mathcal{H}, \left( .,. \right) \right)$, respectively, the concept of the boundary triple $\Pi =(\mathcal{H}, \Gamma {0}, \Gamma{1})$ is generalized through the abstract Green's identity for the isometric relation $\Gamma$ between Krein spaces $\left( \mathcal{K}{2}, \left[ .,.\right]{\mathcal{K}{2}} \right) $ and $\left(\mathcal{H}{2}, \left[ .,.\right]{\mathcal{H}{2}} \right) $ without any conditions on $\dom\, \Gamma$ and $\ran\, \Gamma$. This also means that we do not assume the existence of a closed symmetric linear relation $S$ such that $\dom\, \Gamma=S{+}$, which is a standard assumptions in all previous research of boundary triples. The main properties of such a general Green's boundary model are proven. In the process, some useful properties of the isometric relation $V$ between two Krein spaces $X$ and $Y$ are proven. Additionally, surprising properties of the unitary relation $\Gamma : \mathcal{K}{2} \rightarrow\mathcal{H}{2}$ and the self-adjoint main transformation $\tilde{A}$ of $\Gamma$ are discovered. Then, two statements about generalized Nevanlinna families are generalized using this Green's boundary model. Furthermore, several previously known boundary triples involving a Hilbert space $\mathcal{K}$ and reduction operator $\Gamma : \mathcal{K}{2} \rightarrow\mathcal{H}{2}$, such as AB-generalized, B-generalized, ordinary, isometric, unitary, quasi-boundary, and S-generalized boundary triples, have been extended to a Krein space $\mathcal{K}$ and linear relation $\Gamma$ using the Green's boundary model approach.

Summary

We haven't generated a summary for this paper yet.