Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Entangling interactions between artificial atoms mediated by a multimode left-handed superconducting ring resonator (2307.15695v2)

Published 28 Jul 2023 in quant-ph and cond-mat.supr-con

Abstract: Superconducting metamaterial transmission lines implemented with lumped circuit elements can exhibit left-handed dispersion, where the group and phase velocity have opposite sign, in a frequency range relevant for superconducting artificial atoms. Forming such a metamaterial transmission line into a ring and coupling it to qubits at different points around the ring results in a multimode bus resonator with a compact footprint. Using flux-tunable qubits, we characterize and theoretically model the variation in the coupling strength between the two qubits and each of the ring resonator modes. Although the qubits have negligible direct coupling between them, their interactions with the multimode ring resonator result in both a transverse exchange coupling and a higher order $ZZ$ interaction between the qubits. As we vary the detuning between the qubits and their frequency relative to the ring resonator modes, we observe significant variations in both of these inter-qubit interactions, including zero crossings and changes of sign. The ability to modulate interaction terms such as the $ZZ$ scale between zero and large values for small changes in qubit frequency provides a promising pathway for implementing entangling gates in a system capable of hosting many qubits.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (10)
  1. J. I. Cirac and P. Zoller, Nature Physics 8, 264 (2012).
  2. V. G. Veselago, “Electrodynamics of media with simultaneously negative electric permittivity and magnetic permeability,” in Advances in Electromagnetics of Complex Media and Metamaterials, edited by S. Zouhdi, A. Sihvola,  and M. Arsalane (Springer Netherlands, Dordrecht, 2002) pp. 83–97.
  3. C. Caloz and T. Itoh, IEEE Transactions on Antennas and Propagation 52, 1159 (2004).
  4. M. H. Ansari, Physical Review B 100, 024509 (2019).
  5. D. M. Pozar, Microwave engineering (John wiley & sons, 2011).
  6. N. W. Ashcroft and N. D. Mermin, Solid state physics (Cengage Learning, 2022).
  7. X. Xu and M. Ansari, Physical Review Applied 15, 064074 (2021).
  8. E. Magesan and J. M. Gambetta, Physical Review A 101, 052308 (2020).
  9. X. Xu and M. Ansari, Physical Review Applied 19, 024057 (2023).
  10. C. Rigetti and M. Devoret, Physical Review B 81, 134507 (2010).
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com