Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

R-LPIPS: An Adversarially Robust Perceptual Similarity Metric (2307.15157v2)

Published 27 Jul 2023 in cs.CV, cs.LG, and eess.IV

Abstract: Similarity metrics have played a significant role in computer vision to capture the underlying semantics of images. In recent years, advanced similarity metrics, such as the Learned Perceptual Image Patch Similarity (LPIPS), have emerged. These metrics leverage deep features extracted from trained neural networks and have demonstrated a remarkable ability to closely align with human perception when evaluating relative image similarity. However, it is now well-known that neural networks are susceptible to adversarial examples, i.e., small perturbations invisible to humans crafted to deliberately mislead the model. Consequently, the LPIPS metric is also sensitive to such adversarial examples. This susceptibility introduces significant security concerns, especially considering the widespread adoption of LPIPS in large-scale applications. In this paper, we propose the Robust Learned Perceptual Image Patch Similarity (R-LPIPS) metric, a new metric that leverages adversarially trained deep features. Through a comprehensive set of experiments, we demonstrate the superiority of R-LPIPS compared to the classical LPIPS metric. The code is available at https://github.com/SaraGhazanfari/R-LPIPS.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com