Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FLiCR: A Fast and Lightweight LiDAR Point Cloud Compression Based on Lossy RI (2307.15005v1)

Published 27 Jul 2023 in cs.MM and cs.DC

Abstract: Light detection and ranging (LiDAR) sensors are becoming available on modern mobile devices and provide a 3D sensing capability. This new capability is beneficial for perceptions in various use cases, but it is challenging for resource-constrained mobile devices to use the perceptions in real-time because of their high computational complexity. In this context, edge computing can be used to enable LiDAR online perceptions, but offloading the perceptions on the edge server requires a low-latency, lightweight, and efficient compression due to the large volume of LiDAR point clouds data. This paper presents FLiCR, a fast and lightweight LiDAR point cloud compression method for enabling edge-assisted online perceptions. FLiCR is based on range images (RI) as an intermediate representation (IR), and dictionary coding for compressing RIs. FLiCR achieves its benefits by leveraging lossy RIs, and we show the efficiency of bytestream compression is largely improved with quantization and subsampling. In addition, we identify the limitation of current quality metrics for presenting the entropy of a point cloud, and introduce a new metric that reflects both point-wise and entropy-wise qualities for lossy IRs. The evaluation results show FLiCR is more suitable for edge-assisted real-time perceptions than the existing LiDAR compressions, and we demonstrate the effectiveness of our compression and metric with the evaluations on 3D object detection and LiDAR SLAM.

Citations (6)

Summary

We haven't generated a summary for this paper yet.