Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interlayer Coupling Driven High-Temperature Superconductivity in La$_3$Ni$_2$O$_7$ Under Pressure (2307.14965v3)

Published 27 Jul 2023 in cond-mat.supr-con and cond-mat.str-el

Abstract: The newly discovered high-temperature superconductivity in La$3$Ni$_2$O$_7$ under pressure has attracted a great deal of attentions. The essential ingredient characterizing the electronic properties is the bilayer NiO$_2$ planes coupled by the interlayer bonding of $3d{z2}$ orbitals through the intermediate oxygen-atoms. In the strong coupling limit, the low energy physics is described by an intralayer antiferromagnetic spin-exchange interaction $J_{\parallel}$ between $3d_{x2-y2}$ orbitals and an interlayer one $J_{\perp}$ between $3d_{z2}$ orbitals. Taking into account Hund's rule on each site and integrating out the $3d_{z2}$ spin degree of freedom, the system reduces to a single-orbital bilayer $t$-$J$ model based on the $3d_{x2-y2}$ orbital. By employing the slave-boson approach, the self-consistent equations for the bonding and pairing order parameters are solved. Near the physically relevant $\frac{1}{4}$-filling regime (doping $\delta=0.3\sim 0.5$), the interlayer coupling $J_{\perp}$ tunes the conventional single-layer $d$-wave superconducting state to the $s$-wave one. A strong $J_{\perp}$ could enhance the inter-layer superconducting order, leading to a dramatically increased $T_c$. Interestingly, there could exist a finite regime in which an $s+id$ state emerges.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. J. G. Bednorz and K. A. Müller, Zeitschrift für Physik B Condensed Matter 64, 189 (1986).
  2. P. W. Anderson, science 235, 1196 (1987).
  3. G. Kotliar and J. Liu, Phys. Rev. B 38, 5142 (1988).
  4. C. Proust and L. Taillefer, Annual Review of Condensed Matter Physics 10, 409 (2019).
  5. L.-H. Hu and C. Wu, Phys. Rev. Res. 1, 032046 (2019).
  6. D. A. Shilenko and I. V. Leonov, Phys. Rev. B 108, 125105 (2023).
  7. Y. Cao and Y.-f. Yang, Phys. Rev. B 109, L081105 (2024).
  8. H. Oh and Y.-H. Zhang, Phys. Rev. B 108, 174511 (2023).
  9. V. Pardo and W. E. Pickett, Phys. Rev. B 83, 245128 (2011).
  10. M. U. Ubbens and P. A. Lee, Phys. Rev. B 50, 438 (1994).
  11. A. Auerbach, Interacting electrons and quantum magnetism, corr., 2. print ed., Graduate texts in contemporary physics (Springer, New York Berlin Heidelberg, 1998).
  12. See Supplemental Material at (URL will be inserted by publisher) for additional information.
  13. K. Kuboki and P. A. Lee, Journal of the Physical Society of Japan 64, 3179 (1995).
  14. H. Zhao and J. R. Engelbrecht, Phys. Rev. B 71, 054508 (2005).
  15. T. Kopeć and T. Polak, Phys. Rev. B 62, 14419 (2000).
Citations (68)

Summary

We haven't generated a summary for this paper yet.