Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Widespread Flaws in Offline Evaluation of Recommender Systems (2307.14951v1)

Published 27 Jul 2023 in cs.IR

Abstract: Even though offline evaluation is just an imperfect proxy of online performance -- due to the interactive nature of recommenders -- it will probably remain the primary way of evaluation in recommender systems research for the foreseeable future, since the proprietary nature of production recommenders prevents independent validation of A/B test setups and verification of online results. Therefore, it is imperative that offline evaluation setups are as realistic and as flawless as they can be. Unfortunately, evaluation flaws are quite common in recommender systems research nowadays, due to later works copying flawed evaluation setups from their predecessors without questioning their validity. In the hope of improving the quality of offline evaluation of recommender systems, we discuss four of these widespread flaws and why researchers should avoid them.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Balázs Hidasi (10 papers)
  2. Ádám Tibor Czapp (3 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.