Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MatrixWorld: A pursuit-evasion platform for safe multi-agent coordination and autocurricula (2307.14854v2)

Published 27 Jul 2023 in cs.MA

Abstract: Multi-agent reinforcement learning (MARL) achieves encouraging performance in solving complex tasks. However, the safety of MARL policies is one critical concern that impedes their real-world applications. Popular multi-agent benchmarks focus on diverse tasks yet provide limited safety support. Therefore, this work proposes a safety-constrained multi-agent environment: MatrixWorld, based on the general pursuit-evasion game. Particularly, a safety-constrained multi-agent action execution model is proposed for the software implementation of safe multi-agent environments based on diverse safety definitions. It (1) extends the vertex conflict among homogeneous / cooperative agents to heterogeneous / adversarial settings, and (2) proposes three types of resolutions for each type of conflict, aiming at providing rational and unbiased feedback for safe MARL. Besides, MatrixWorld is also a lightweight co-evolution framework for the learning of pursuit tasks, evasion tasks, or both, where more pursuit-evasion variants can be designed based on different practical meanings of safety. As a brief survey, we review and analyze the co-evolution mechanism in the multi-agent setting, which clearly reveals its relationships with autocurricula, self-play, arms races, and adversarial learning. Thus, MatrixWorld can also serve as the first environment for autocurricula research, where ideas can be quickly verified and well understood.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Lijun Sun (85 papers)
  2. Yu-Cheng Chang (35 papers)
  3. Chao Lyu (6 papers)
  4. Chin-Teng Lin (78 papers)
  5. Yuhui Shi (44 papers)

Summary

We haven't generated a summary for this paper yet.