Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Deeply Unified Depth-aware Panoptic Segmentation with Bi-directional Guidance Learning (2307.14786v2)

Published 27 Jul 2023 in cs.CV

Abstract: Depth-aware panoptic segmentation is an emerging topic in computer vision which combines semantic and geometric understanding for more robust scene interpretation. Recent works pursue unified frameworks to tackle this challenge but mostly still treat it as two individual learning tasks, which limits their potential for exploring cross-domain information. We propose a deeply unified framework for depth-aware panoptic segmentation, which performs joint segmentation and depth estimation both in a per-segment manner with identical object queries. To narrow the gap between the two tasks, we further design a geometric query enhancement method, which is able to integrate scene geometry into object queries using latent representations. In addition, we propose a bi-directional guidance learning approach to facilitate cross-task feature learning by taking advantage of their mutual relations. Our method sets the new state of the art for depth-aware panoptic segmentation on both Cityscapes-DVPS and SemKITTI-DVPS datasets. Moreover, our guidance learning approach is shown to deliver performance improvement even under incomplete supervision labels.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (9)
  1. Junwen He (5 papers)
  2. Yifan Wang (321 papers)
  3. Lijun Wang (51 papers)
  4. Huchuan Lu (199 papers)
  5. Jun-Yan He (27 papers)
  6. Jin-Peng Lan (7 papers)
  7. Bin Luo (209 papers)
  8. Yifeng Geng (30 papers)
  9. Xuansong Xie (69 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.