Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Constraints on the parameters of modified Chaplygin-Jacobi and modified Chaplygin-Abel gases in $f(T)$ gravity (2307.14691v2)

Published 27 Jul 2023 in gr-qc

Abstract: In this study, we investigate two dark energy models, MCJG and MCAG, in the context of $f(T)$ gravity within a non-flat FLRW Universe. Our analysis considers radiation, dark matter, and dark energy components. We compare the equation of state for MCJG and MCAG with $f(T)$ gravity. Using recent astronomical data (e.g., $H(z)$, type Ia supernovae, Gamma Ray Bursts, quasars, and BAO), we constrain the models' parameters and explore the Universe's behavior. The reduced Hubble parameter is expressed in terms of observable parameters like $\Omega_{r0}$, $\Omega_{m0}$, $\Omega_{k0}$, $\Omega_{CJ0}$, $\Omega_{CA0}$, and $H_0$. We investigate cosmic evolution using deceleration, $\mathrm{Om}$, and statefinder diagnostics. Information criteria are employed to assess model viability, comparing against the standard $\Lambda$CDM model. Our objective is to deepen our understanding of dark energy, its relation to $f(T)$ gravity, and the mechanisms governing the accelerated expansion of the Universe.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. arXiv:astro-ph/9712212, doi:10.1038/34124.
  2. arXiv:astro-ph/9812133, doi:10.1086/307221.
  3. arXiv:astro-ph/9805201, doi:10.1086/300499.
  4. arXiv:astro-ph/9709112, doi:10.1086/305424.
  5. arXiv:astro-ph/0501171, doi:10.1086/466512.
  6. arXiv:astro-ph/0303180, doi:10.1126/science.1082158.
  7. arXiv:astro-ph/0302209, doi:10.1086/377226.
  8. arXiv:0803.0547, doi:10.1088/0067-0049/180/2/330.
  9. arXiv:astro-ph/0207347, doi:10.1103/RevModPhys.75.559.
  10. doi:10.1103/RevModPhys.61.1.
  11. arXiv:hep-th/0603057, doi:10.1142/S021827180600942X.
  12. arXiv:0710.1708, doi:10.1007/s10509-007-9690-6.
  13. arXiv:astro-ph/0511814, doi:10.1142/S0218271806008784.
  14. doi:10.1007/s10773-013-1982-8.
  15. arXiv:1410.6588, doi:10.1007/s10509-016-2916-8.
  16. arXiv:1305.7204, doi:10.1134/S0202289315010119.
  17. arXiv:2112.00296, doi:10.1142/S0217751X21502456.
  18. doi:10.1142/S0219887823502183.
  19. arXiv:1108.6266, doi:10.1016/j.physrep.2011.09.003.
  20. arXiv:1011.0544, doi:10.1016/j.physrep.2011.04.001.
  21. arXiv:1002.4928, doi:10.12942/lrr-2010-3.
  22. arXiv:0810.5712, doi:10.1016/j.physletb.2009.03.060.
  23. doi:10.1063/1.1665613.
  24. arXiv:0812.1981, doi:10.1103/PhysRevD.78.124019.
  25. arXiv:0812.1205, doi:10.1103/PhysRevD.79.124019.
  26. arXiv:1005.3039, doi:10.1103/PhysRevD.81.127301.
  27. arXiv:physics/0503046.
  28. doi:10.1103/PhysRevD.19.3524.
  29. arXiv:gr-qc/0610067, doi:10.1103/PhysRevD.75.084031.
  30. arXiv:1401.7378, doi:10.1016/j.physletb.2014.02.041.
  31. arXiv:1604.07604, doi:10.1103/PhysRevD.94.083513.
  32. arXiv:1008.1250, doi:10.1103/PhysRevD.83.023508.
  33. arXiv:1007.2348, doi:10.1016/j.physletb.2010.07.038.
  34. arXiv:1907.07533, doi:10.1103/PhysRevD.100.083517.
  35. arXiv:1203.5781, doi:10.1111/j.1365-2966.2012.21995.x.
  36. arXiv:1102.2758, doi:10.1007/s10509-011-0651-8.
  37. doi:10.1007/s10773-014-2195-5.
  38. arXiv:1406.3043, doi:10.1139/cjp-2014-0287.
  39. arXiv:1310.2144, doi:10.1155/2014/653630.
  40. arXiv:1104.4349, doi:10.1088/0264-9381/28/21/215011.
Citations (4)

Summary

We haven't generated a summary for this paper yet.