Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Derivative Pricing using Quantum Signal Processing (2307.14310v2)

Published 26 Jul 2023 in quant-ph and q-fin.CP

Abstract: Pricing financial derivatives on quantum computers typically includes quantum arithmetic components which contribute heavily to the quantum resources required by the corresponding circuits. In this manuscript, we introduce a method based on Quantum Signal Processing (QSP) to encode financial derivative payoffs directly into quantum amplitudes, alleviating the quantum circuits from the burden of costly quantum arithmetic. Compared to current state-of-the-art approaches in the literature, we find that for derivative contracts of practical interest, the application of QSP significantly reduces the required resources across all metrics considered, most notably the total number of T-gates by $\sim 16$x and the number of logical qubits by $\sim 4$x. Additionally, we estimate that the logical clock rate needed for quantum advantage is also reduced by a factor of $\sim 5$x. Overall, we find that quantum advantage will require $4.7$k logical qubits, and quantum devices that can execute $109$ T-gates at a rate of $45$MHz. While in this work we focus specifically on the payoff component of the derivative pricing process where the method we present is most readily applicable, similar techniques can be employed to further reduce the resources in other applications, such as state preparation.

Citations (8)

Summary

We haven't generated a summary for this paper yet.