Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CBGL: Fast Monte Carlo Passive Global Localisation of 2D LIDAR Sensor (2307.14247v4)

Published 26 Jul 2023 in cs.RO

Abstract: Navigation of a mobile robot is conditioned on the knowledge of its pose. In observer-based localisation configurations its initial pose may not be knowable in advance, leading to the need of its estimation. Solutions to the problem of global localisation are either robust against noise and environment arbitrariness but require motion and time, which may (need to) be economised on, or require minimal estimation time but assume environmental structure, may be sensitive to noise, and demand preprocessing and tuning. This article proposes a method that retains the strengths and avoids the weaknesses of the two approaches. The method leverages properties of the Cumulative Absolute Error per Ray (CAER) metric with respect to the errors of pose hypotheses of a 2D LIDAR sensor, and utilises scan--to--map-scan matching for fine(r) pose estimations. A large number of tests, in real and simulated conditions, involving disparate environments and sensor properties, illustrate that the proposed method outperforms state-of-the-art methods of both classes of solutions in terms of pose discovery rate and execution time. The source code is available for download.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. A. Millane, H. Oleynikova, J. Nieto, R. Siegwart, and C. Cadena, “Free-Space Features: Global Localization in 2D Laser SLAM Using Distance Function Maps,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, nov 2019, pp. 1271–1277.
  2. K. P. Cop, P. V. K. Borges, and R. Dube, “Delight: An Efficient Descriptor for Global Localisation Using LiDAR Intensities,” in 2018 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, may 2018, pp. 3653–3660.
  3. Y. Guo, M. Bennamoun, F. Sohel, M. Lu, J. Wan, and N. M. Kwok, “A Comprehensive Performance Evaluation of 3D Local Feature Descriptors,” International Journal of Computer Vision, vol. 116, no. 1, pp. 66–89, jan 2016.
  4. A. Tzitzis, A. Filotheou, A. R. Chatzistefanou, T. Yioultsis, and A. G. Dimitriou, “Real-Time Global Localization of a Mobile Robot by Exploiting RFID Technology,” IEEE Journal of Radio Frequency Identification, pp. 1–1, 2023.
  5. S. Lowry, N. Sünderhauf, P. Newman, J. J. Leonard, D. Cox, P. Corke, and M. J. Milford, “Visual Place Recognition: A Survey,” IEEE Transactions on Robotics, vol. 32, no. 1, pp. 1–19, feb 2016.
  6. D. M. Rosen, K. J. Doherty, A. Terán Espinoza, and J. J. Leonard, “Advances in Inference and Representation for Simultaneous Localization and Mapping,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 4, no. 1, pp. 215–242, may 2021.
  7. M. Cooper, J. Raquet, and R. Patton, “Range Information Characterization of the Hokuyo UST-20LX LIDAR Sensor,” Photonics, 2018.
  8. H. Yin, X. Xu, S. Lu, X. Chen, R. Xiong, S. Shen, C. Stachniss, and Y. Wang, “A survey on global lidar localization: Challenges, advances and open problems,” arXiv:2302.07433, 2023.
  9. N. Akai, L. Y. Morales, and H. Murase, “Mobile Robot Localization Considering Class of Sensor Observations,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, oct 2018, pp. 3159–3166.
  10. J. Wang, P. Wang, and Z. Chen, “A novel qualitative motion model based probabilistic indoor global localization method,” Information Sciences, vol. 429, pp. 284–295, mar 2018.
  11. A. Yilmaz and H. Temeltas, “Self-adaptive Monte Carlo method for indoor localization of smart AGVs using LIDAR data,” Robotics and Autonomous Systems, vol. 122, p. 103285, dec 2019.
  12. M. A. Alshikh Khalil and I. Hatem, “Development of a new technique in ros for mobile robots localization in known-based 2d environments,” Tishreen University Journal of Research and Scientific Studies - Engineering Sciences Series, pp. 119–137, 2021.
  13. R. Chen, H. Yin, Y. Jiao, G. Dissanayake, Y. Wang, and R. Xiong, “Deep Samplable Observation Model for Global Localization and Kidnapping,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 2296–2303, apr 2021.
  14. F. Kallasi and D. L. Rizzini, “Efficient loop closure based on FALKO lidar features for online robot localization and mapping,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, oct 2016, pp. 1206–1213.
  15. M. Usman, A. M. Khan, A. Ali, S. Yaqub, K. M. Zuhaib, J. Y. Lee, and C.-S. Han, “An Extensive Approach to Features Detection and Description for 2-D Range Data Using Active B-splines,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2934–2941, jul 2019.
  16. Z. Wang, L. Zhang, S. Zhao, and S. Zhang, “Global Localization With a Single-Line LiDAR by Dense 2D Signature and 1D Registration,” IEEE Sensors Journal, vol. 21, no. 10, pp. 11 497–11 506, may 2021.
  17. J. Meng, L. Wan, S. Wang, L. Jiang, G. Li, L. Wu, and Y. Xie, “Efficient and Reliable LiDAR-Based Global Localization of Mobile Robots Using Multiscale/Resolution Maps,” IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1–15, 2021.
  18. R. W. M. Hendrikx, P. Pauwels, E. Torta, H. J. Bruyninckx, and M. J. G. van de Molengraft, “Connecting Semantic Building Information Models and Robotics: An application to 2D LiDAR-based localization,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, may 2021, pp. 11 654–11 660.
  19. S.-Y. An and J. Kim, “Extracting Statistical Signatures of Geometry and Structure in 2D Occupancy Grid Maps for Global Localization,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 4291–4298, apr 2022.
  20. K. Nielsen and G. Hendeby, “Survey on 2D Lidar Feature Extraction for Underground Mine Usage,” IEEE Transactions on Automation Science and Engineering, vol. 20, no. 2, pp. 981–994, apr 2023.
  21. T.-X. Xu, Y.-C. Guo, Z. Li, G. Yu, Y.-K. Lai, and S.-H. Zhang, “TransLoc3D : Point Cloud based Large-scale Place Recognition using Adaptive Receptive Fields,” may 2021. [Online]. Available: http://arxiv.org/abs/2105.11605
  22. P. Yin, F. Wang, A. Egorov, J. Hou, Z. Jia, and J. Han, “Fast Sequence-Matching Enhanced Viewpoint-Invariant 3-D Place Recognition,” IEEE Transactions on Industrial Electronics, vol. 69, no. 2, pp. 2127–2135, feb 2022.
  23. J. Komorowski, “Improving Point Cloud Based Place Recognition with Ranking-based Loss and Large Batch Training,” in 2022 26th International Conference on Pattern Recognition (ICPR).   IEEE, aug 2022, pp. 3699–3705.
  24. A. Filotheou, A. Tzitzis, E. Tsardoulias, A. Dimitriou, A. Symeonidis, G. Sergiadis, and L. Petrou, “Passive Global Localisation of Mobile Robot via 2D Fourier-Mellin Invariant Matching,” Journal of Intelligent & Robotic Systems, p. 26, 2022.
  25. A. Filotheou, G. D. Sergiadis, and A. G. Dimitriou, “FSM: Correspondenceless scan-matching of panoramic 2D range scans,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022.
  26. A. Filotheou, A. L. Symeonidis, G. D. Sergiadis, and A. G. Dimitriou, “Correspondenceless scan-to-map-scan matching of 2D panoramic range scans,” Array, 2023.
  27. G. Vasiljević, D. Miklić, I. Draganjac, Z. Kovačić, and P. Lista, “High-accuracy vehicle localization for autonomous warehousing,” Robotics and Computer-Integrated Manufacturing, 2016.
  28. I. Vizzo, T. Guadagnino, B. Mersch, L. Wiesmann, J. Behley, and C. Stachniss, “KISS-ICP: In Defense of Point-to-Point ICP – Simple, Accurate, and Robust Registration If Done the Right Way,” IEEE Robotics and Automation Letters, 2023.
  29. N. Akai, “Reliable monte carlo localization for mobile robots,” arXiv:2205.04769, 2022.
  30. A. Censi, “An ICP variant using a point-to-line metric,” in 2008 IEEE International Conference on Robotics and Automation.   IEEE, may 2008, pp. 19–25.
  31. “Datasets used in the experimental procedure.” [Online]. Available: http://ais.informatik.uni-freiburg.de/slamevaluation/datasets.php
  32. P. Biber and W. Strasser, “The normal distributions transform: a new approach to laser scan matching,” in Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), vol. 3.   IEEE, 2003, pp. 2743–2748.
  33. A. Segal, D. Haehnel, and S. Thrun, “Generalized-ICP,” in Robotics: Science and Systems V.   Robotics: Science and Systems Foundation, jun 2009.
  34. K. Koide, M. Yokozuka, S. Oishi, and A. Banno, “Voxelized GICP for Fast and Accurate 3D Point Cloud Registration,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, may 2021, pp. 11 054–11 059.

Summary

We haven't generated a summary for this paper yet.