Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Domain Disentanglement with Interpolative Data Augmentation for Dual-Target Cross-Domain Recommendation (2307.13910v1)

Published 26 Jul 2023 in cs.IR

Abstract: The conventional single-target Cross-Domain Recommendation (CDR) aims to improve the recommendation performance on a sparser target domain by transferring the knowledge from a source domain that contains relatively richer information. By contrast, in recent years, dual-target CDR has been proposed to improve the recommendation performance on both domains simultaneously. However, to this end, there are two challenges in dual-target CDR: (1) how to generate both relevant and diverse augmented user representations, and (2) how to effectively decouple domain-independent information from domain-specific information, in addition to domain-shared information, to capture comprehensive user preferences. To address the above two challenges, we propose a Disentanglement-based framework with Interpolative Data Augmentation for dual-target Cross-Domain Recommendation, called DIDA-CDR. In DIDA-CDR, we first propose an interpolative data augmentation approach to generating both relevant and diverse augmented user representations to augment sparser domain and explore potential user preferences. We then propose a disentanglement module to effectively decouple domain-specific and domain-independent information to capture comprehensive user preferences. Both steps significantly contribute to capturing more comprehensive user preferences, thereby improving the recommendation performance on each domain. Extensive experiments conducted on five real-world datasets show the significant superiority of DIDA-CDR over the state-of-the-art methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Jiajie Zhu (7 papers)
  2. Yan Wang (734 papers)
  3. Feng Zhu (140 papers)
  4. Zhu Sun (32 papers)
Citations (13)

Summary

We haven't generated a summary for this paper yet.