Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gradient-Based Spectral Embeddings of Random Dot Product Graphs (2307.13818v2)

Published 25 Jul 2023 in cs.LG and math.OC

Abstract: The Random Dot Product Graph (RDPG) is a generative model for relational data, where nodes are represented via latent vectors in low-dimensional Euclidean space. RDPGs crucially postulate that edge formation probabilities are given by the dot product of the corresponding latent positions. Accordingly, the embedding task of estimating these vectors from an observed graph is typically posed as a low-rank matrix factorization problem. The workhorse Adjacency Spectral Embedding (ASE) enjoys solid statistical properties, but it is formally solving a surrogate problem and can be computationally intensive. In this paper, we bring to bear recent advances in non-convex optimization and demonstrate their impact to RDPG inference. We advocate first-order gradient descent methods to better solve the embedding problem, and to organically accommodate broader network embedding applications of practical relevance. Notably, we argue that RDPG embeddings of directed graphs loose interpretability unless the factor matrices are constrained to have orthogonal columns. We thus develop a novel feasible optimization method in the resulting manifold. The effectiveness of the graph representation learning framework is demonstrated on reproducible experiments with both synthetic and real network data. Our open-source algorithm implementations are scalable, and unlike the ASE they are robust to missing edge data and can track slowly-varying latent positions from streaming graphs.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. M. Fiori, B. Marenco, F. Larroca, P. Bermolen, and G. Mateos, “Algorithmic advances for the adjacency spectral embedding,” in Proc. of European Signal Process. Conf., August 2022.
  2. F. Larroca, P. Bermolen, M. Fiori, B. Marenco, and G. Mateos, “Tracking the Adjacency Spectral Embedding for Streaming Graphs,” in Proc. Asilomar Conf. on Signals, Systems, Computers, 2022.
  3. A. Athreya, D. E. Fishkind, M. Tang, C. E. Priebe, Y. Park, J. T. Vogelstein, K. Levin, V. Lyzinski, and Y. Qin, “Statistical inference on random dot product graphs: A survey,” J. Mach. Learn. Res., vol. 18, no. 1, p. 8393–8484, January 2017.
  4. E. Scheinerman and K. Tucker, “Modeling graphs using dot product representations,” Comput. Stat, vol. 25, pp. 1–16, 2010.
  5. V. Lyzinski, M. Tang, A. Athreya, Y. Park, and C. E. Priebe, “Community detection and classification in hierarchical stochastic blockmodels,” IEEE Trans. Netw. Sci. Eng., vol. 4, no. 1, pp. 13–26, 2017.
  6. B. Marenco, P. Bermolen, M. Fiori, F. Larroca, and G. Mateos, “Online change point detection for weighted and directed random dot product graphs,” IEEE Trans. Signal Inf. Process. Netw., vol. 8, pp. 144–159, 2022.
  7. W. L. Hamilton, “Graph representation learning,” Synthesis Lectures on Artificial Intelligence and Machine Learning, vol. 14, pp. 1–159, 2020.
  8. J. Chung, B. D. Pedigo, E. W. Bridgeford, B. K. Varjavand, H. S. Helm, and J. T. Vogelstein, “GraSPy: Graph statistics in Python.” J. Mach. Learn. Res., vol. 20, no. 158, pp. 1–7, 2019.
  9. I. Gallagher, A. Jones, and P. Rubin-Delanchy, “Spectral embedding for dynamic networks with stability guarantees,” Proc. Adv. Neural. Inf. Process. Syst., 2021.
  10. Y. Chi, Y. Lu, and Y. Chen, “Nonconvex optimization meets low-rank matrix factorization: An overview,” IEEE Trans. Signal Process., vol. 67, no. 20, pp. 5239–5269, 2019.
  11. T. Vu and R. Raich, “Exact linear convergence rate analysis for low-rank symmetric matrix completion via gradient descent,” in Proc. Int. Conf. Acoustics, Speech, Signal Process., 2021, pp. 3240–3244.
  12. A. G. Marques, S. Segarra, and G. Mateos, “Signal processing on directed graphs,” IEEE Signal Process. Mag., vol. 37, no. 6, pp. 99–116, 2020.
  13. Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recommender systems,” Computer, vol. 42, no. 8, pp. 30–37, 2009.
  14. I. Dokmanic, R. Parhizkar, J. Ranieri, and M. Vetterli, “Euclidean distance matrices: Essential theory, algorithms, and applications,” IEEE Signal Process. Mag., vol. 32, no. 6, pp. 12–30, 2015.
  15. M. A. Davenport and J. Romberg, “An overview of low-rank matrix recovery from incomplete observations,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 4, pp. 608–622, 2016.
  16. M. Brand, “Fast low-rank modifications of the thin singular value decomposition,” Linear Algebra Appl., vol. 415, no. 1, pp. 20–30, 2006, special Issue on Large Scale Linear and Nonlinear Eigenvalue Problems.
  17. K. Levin, A. Athreya, M. Tang, V. Lyzinski, and C. E. Priebe, “A central limit theorem for an omnibus embedding of multiple random dot product graphs,” in Int. Conf. on Data Mining Workshops, 2017, pp. 964–967.
  18. A. Jones and P. Rubin-Delanchy, “The multilayer random dot product graph,” arXiv:2007.10455 [stat.ML], 2020.
  19. Z. Zhang, P. Cui, J. Pei, X. Wang, and W. Zhu, “TIMERS: Error-bounded SVD restart on dynamic networks,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1, Apr. 2018.
  20. N. Halko, P. G. Martinsson, and J. A. Tropp, “Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions,” SIAM Rev., vol. 53, no. 2, pp. 217–288, 2011.
  21. I. Chami, S. Abu-El-Haija, B. Perozzi, C. Ré, and K. Murphy, “Machine learning on graphs: A model and comprehensive taxonomy,” J. Mach. Learn. Res., vol. 23, no. 89, pp. 1–64, 2022.
  22. V. Kalantzis and P. Traganitis, “Matrix resolvent eigenembeddings for dynamic graphs,” in Proc. Int. Conf. Acoustics, Speech, Signal Process., 2023.
  23. K. Levin, F. Roosta, M. Mahoney, and C. Priebe, “Out-of-sample extension of graph adjacency spectral embedding,” in Proc. Int. Conf. Mach. Learn., vol. 80, 2018, pp. 2975–2984.
  24. S. Bhojanapalli, A. Kyrillidis, and S. Sanghavi, “Dropping convexity for faster semi-definite optimization,” in Proc. Conf. Learn. Theory, 2016, pp. 530–582.
  25. Y. Chen and M. Wainwright, “Fast low-rank estimation by projected gradient descent: General statistical and algorithmic guarantees,” arXiv:1509.03025 [math.ST], 2015.
  26. R. Sun and Z. Luo, “Guaranteed matrix completion via non-convex factorization,” IEEE Trans. Inf. Theory, vol. 62, pp. 6535–6579, 2016.
  27. D. Zhou, Y. Cao, and Q. Gu, “Accelerated factored gradient descent for low-rank matrix factorization,” in Proc. Int. Conf. Artif. Intell. Statist., 2020, pp. 4430–4440.
  28. N. Boumal, P.-A. Absil, and C. Cartis, “Global rates of convergence for nonconvex optimization on manifolds,” IMA Journal of Numerical Analysis, vol. 39, no. 1, pp. 1–33, 02 2018.
  29. J. Townsend, N. Koep, and S. Weichwald, “Pymanopt: A Python toolbox for optimization on manifolds using automatic differentiation,” J. Mach. Learn. Res., vol. 17, no. 137, pp. 1–5, 2016.
  30. E. Voeten, A. Strezhnev, and M. Bailey, “United Nations General Assembly Voting Data,” 2009. [Online]. Available: https://doi.org/10.7910/DVN/LEJUQZ
  31. M. Tang, A. Athreya, D. Sussman, V. Lyzinski, Y. Park, and C. Priebe, “A semiparametric two-sample hypothesis testing problem for random graphs,” J. Comput. Graph. Stat., vol. 26, no. 2, 2017.
  32. Y. Yu, O. H. M. Padilla, D. Wang, and A. Rinaldo, “Optimal network online change point localisation,” arXiv:2101.05477 [math.ST], 2021.
  33. H. Chen, “Sequential change-point detection based on nearest neighbors,” Ann. Stat, vol. 47, no. 3, pp. 1381 – 1407, 2019.
  34. M. Zhang, L. Xie, and Y. Xie, “Online community detection by spectral CUSUM,” in Proc. Int. Conf. Acoustics, Speech, Signal Process., 2020.
  35. P. Campos, F. Díez, and I. Cantador, “Time-aware recommender systems: A comprehensive survey and analysis of existing evaluation protocols,” User Model. User-adapt. Interact., vol. 24, pp. 67–119, 2014.
  36. G. Mateos and K. Rajawat, “Dynamic network cartography: Advances in network health monitoring,” IEEE Signal Process. Mag., vol. 30, no. 3, pp. 129–143, 2013.
  37. R. Tang, M. Tang, J. T. Vogelstein, and C. E. Priebe, “Robust estimation from multiple graphs under gross error contamination,” arXiv:1707.03487 [stat.ME], 2017.
  38. G. Capdehourat, F. Larroca, and G. Morales, “A nation-wide Wi-Fi RSSI dataset: Statistical analysis and resulting insights,” in Proc. IFIP Networking Conf., 2020, pp. 370–378.
Citations (2)

Summary

We haven't generated a summary for this paper yet.