Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Differential approximation of the Gaussian by short cosine sums with exponential error decay (2307.13587v1)

Published 25 Jul 2023 in math.NA and cs.NA

Abstract: In this paper we propose a method to approximate the Gaussian function on ${\mathbb R}$ by a short cosine sum. We extend the differential approximation method proposed in [4,39] to approximate $\mathrm{e}{-t{2}/2\sigma}$ in the weighted space $L_2({\mathbb R}, \mathrm{e}{-t{2}/2\rho})$ where $\sigma, \, \rho >0$. We prove that the optimal frequency parameters $\lambda_1, \ldots , \lambda_{N}$ for this method in the approximation problem $ \min\limits_{\lambda_{1},\ldots, \lambda_{N}, \gamma_{1} \ldots \gamma_{N}}|\mathrm{e}{-\cdot{2}/2\sigma} - \sum\limits_{j=1}{N} \gamma_{j} \, {\mathrm e}{\lambda_{j} \cdot}|{L{2}({\mathbb R}, \mathrm{e}{-t{2}/2\rho})}$, are zeros of a scaled Hermite polynomial. This observation leads us to a numerically stable approximation method with low computational cost of $\mathit{O}(N{3})$ operations. Furthermore, we derive a direct algorithm to solve this approximation problem based on a matrix pencil method for a special structured matrix. The entries of this matrix are determined by hypergeometric functions. For the weighted $L_{2}$-norm, we prove that the approximation error decays exponentially with respect to the length $N$ of the sum. An exponentially decaying error in the (unweighted) $L{2}$-norm is achieved using a truncated cosine sum.

Summary

We haven't generated a summary for this paper yet.