Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating Single-Node PageRank in $\tilde{O}\left(\min\{d_t, \sqrt{m}\}\right)$ Time (2307.13162v2)

Published 24 Jul 2023 in cs.DS

Abstract: PageRank is a famous measure of graph centrality that has numerous applications in practice. The problem of computing a single node's PageRank has been the subject of extensive research over a decade. However, existing methods still incur large time complexities despite years of efforts. Even on undirected graphs where several valuable properties held by PageRank scores, the problem of locally approximating the PageRank score of a target node remains a challenging task. Two commonly adopted techniques, Monte-Carlo based random walks and backward push, both cost $O(n)$ time in the worst-case scenario, which hinders existing methods from achieving a sublinear time complexity like $O(\sqrt{m})$ on an undirected graph with $n$ nodes and $m$ edges. In this paper, we focus on the problem of single-node PageRank computation on undirected graphs. We propose a novel algorithm, SetPush, for estimating single-node PageRank specifically on undirected graphs. With non-trival analysis, we prove that our SetPush achieves the $\tilde{O}\left(\min\left{d_t, \sqrt{m}\right}\right)$ time complexity for estimating the target node $t$'s PageRank with constant relative error and constant failure probability on undirected graphs. We conduct comprehensive experiments to demonstrate the effectiveness of SetPush.

Summary

We haven't generated a summary for this paper yet.